Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Добавим еще одну немаловажную подробность — при сгорании растительная нефть не загрязняет окружающую среду двуокисью серы или какими-либо другими токсичными компонентами.

И еще одно: из нефтяного сока уже вырабатывают смазочные материалы для моторов самолетов и точных машин, а также защитные средства против обледенения.

Проект «Фотоводород»

Предыдущий рассказ о гевее и растениях рода молочаевых, как надеется  автор, укрепил  веру читателя в то, что растения способны на многое. И даже на производство... водорода!

В 1942 году американский исследователь Г. Гаффрон обнаружил, что сине-зеленые водоросли (рекордсмены среди растений по длительности существования на Земле — 3 миллиарда лет!), помещенные в искусственную атмосферу из инертного газа (без углекислоты и кислорода воздуха), начинают под действием света выделять вовсе не кислород, а водород.

Как же так? Мы привыкли, что растения выделяют кислород, которым дышит все живое, а тут...

В поисках ответа на этот вопрос наука еще не пришла к единому мнению. Но, видимо, накопившиеся в результате разложения воды излишки водорода (напоминаем, что в естественных условиях этот водород соединяется с углекислотой воздуха) требуют выхода, удаления. И водоросли «извергают» их.

Водородный цех может работать не только в сине-зеленых водорослях, но и в некоторых видах фотосинтезирующих бактерий. А также в искусственных системах, содержащих выделенные из растений хлоропласты.

Ну чем не фантастика! Не надо копировать тончайшие процессы разложения воды (химическая бионика), а сразу получать уже готовый водород.

Брать от растений не только плоды или клубни, но и топливо. Однако не в виде дров, как встарь, а по-иному — остановить фотосинтез на стадии разложения воды и вывести водород из недр растений (или водорослей, или бактерий) до того, как он будет израсходован на восстановление углекислоты воздуха.

Подобные исследования были начаты во многих странах. В нашей стране возник проект «Фотоводород», объединяющий многие организации.

Его совместно осуществляют находящийся в подмосковном городе Пущино Институт фотосинтеза Академии наук СССР, химический и биологический факультеты Московского государственного университета и другие научные коллективы.

Конечная цель проекта «Фотоводород» — подобрать биологические системы, которые бы использовали солнечную энергию для извлечения из воды не только кислорода, но и водорода.

Вновь не будем углубляться в научные тонкости, а обрисуем лишь контуры. Наиболее развит аппарат фотосинтеза у высших растений. Но заставить    работать высокоразвитые создания так, как это надо нам, совсем не просто. Поэтому выбрали обходный путь — модельные системы.

Решили разрушить клетки растений, выделить хлоропласты — органеллы, в которых идет фотосинтез, в чистом виде и поместить их в специально приготовленный раствор — среду, удобную для их функционирования.

В помощь хлоропластам приданы еще два необходимых компонента: ферредоксин — «профессиональный» переносчик электронов, образующихся при поглощении хлорофиллом квантов света, и гидрогеназу — биологический катализатор, способствующий быстрейшему выделению водорода.

Первая установка такого типа была создана в 1973 году в США. Она давала 15 микролитров водорода на миллиграмм хлорофилла и работала всего четверть часа. Дело в том, что ее составляющие части — ферредоксин и гидрогеназа — оказались очень нестойкими.

Тогда за дело взялись совместно советские и английские ученые (работники Института фотосинтеза в Пущине сотрудничали с лабораторией Лондонского университета, которой руководил профессор Дэвид Холл). Их установка выделяла уже литр водорода в час на грамм хлорофилла и работала 6 часов. Ученые сумели найти правильное соотношение частей, подобрали стойкие к окислению ферменты. Но через шесть часов погибает хлоропласт!

И в естественных условиях «срок службы» хлоро-пластов и молекул хлорофилла недолог. Но живая клетка непрерывно заменяет выбывшие из строя «детали» новыми — идет непрерывная регенерация рабочих частей.

Обновляется и состав хлорофиллов. И даже хлоропластов, крошечных фабричек фотосинтеза. А в искусственной системе этого нет. Поэтому здесь задача — постараться превзойти природу, сделать хлоропласта долгожителями, которые и с возрастом не теряли бы своих рабочих качеств.

Ученые многих стран мира пытаются продлить жизнь всех трех главнейших элементов: хлоропластов, ферре-доксина и гидрогеназы. Это один путь. Но есть и другой. Можно заменить живые элементы системы их синтетическими аналогами.

Работа ведется в обоих направлениях. Химики стараются подыскать или создать подходящие аналоги, а биологи — повысить стойкость живых участников реакции.

 <<<     ΛΛΛ     >>>   

По иному эксперимент обычно проводят
И вот ученые задумалисьнельзя ли подыскать растения
Чирков Ю. Занимательно об энергетике науки 13 динозавров
чем для известных уже элементарных частиц
Растения способны на многое

  • Персонализация данных - услуга по печати переменных данных http://aksiomaprint.ru
    aksiomaprint.ru
сайт копирайтеров Евгений