Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Согласно известному каталитическому процессу Фишера—Тропша при соединении с водородом окись углерода способна дать всю гамму необходимых химии углеводородов. Весь спектр тех углеводородов, которые ныне только по традиции связывают с нефтехимией. Можно, например, вырабатывать бензины, этилен, полиэтилен, ацетилен, метанол и так далее — разнообразнейшее сырье для химической промышленности.

Итак, энергия плюс химия — энергохимия. Что это дает? Очень многое.

В этой схеме практически нет воды, следовательно, нет и теплового загрязнения сибирских рек. Отсутствуют выбросы окислов азота и других вредных газов и пыли в атмосферу. Нет традиционной высокой трубы ГРЭС, из которой дни и ночи валит дым. Количество выделяющегося углекислого газа, по оценкам, составит лишь 10 процентов от того, что выбрасывают при обычном сжигании угля.

Энергохимической проект в идеале характеризует замкнутость веществ и энергии; возможность легко перестраивать комплекс и в сторону преимущественного производства электроэнергии, и при необходимости в сторону преимущественного получения химических продуктов;   значительное  увеличение   КПД  энергетической части (до 45—55 процентов) и всего производства в целом; уменьшение удельной капиталоемкости и металлоемкости за счет перехода на более высокие давления и температуры процессов, сокращения многих промежуточных стадий, дублирующих друг друга в отдельно взятых энергетических и химических производствах.

В проект «Энергохимия» входит комплекс теплиц, где под действием искусственного света, углекислого газа и тепла водяного пара на специальных почвах (на основе гуматов бурого угля) скоростным индустриальным  методом  будут выращивать хорошие урожаи.

Да, это будет экологически чистое предприятие, но... Как часто это междометие встает на пути — мешает реализации столь заманчивых проектов!

У действующего сейчас первого поколения МГД-генераторов есть одно слабое место: даже при 3000 градусов (на поверхности Солнца температура всего в два раза выше!) электропроводность плазмы еще низка, в ней мало свободных электронов, и, значит, будет недостаточно велик и генерируемый ток. Поднять же температуру плазмы, чтобы увеличить электропроводность (необходимы десятки тысяч градусов!), трудно, да и никакой материал не выдержит подобных условий.

Обычно для искусственного поднятия электропроводности в раскаленный газ «впрыскивают» присадки — легкоионизирующиеся вещества: пары щелочных металлов — калия, цезия... Электроводность повышается, но зато появляются новые заботы.

Присадки очень агрессивны: все разъедают на своем пути, кроме того, попадая в воздух с отработанными газами, они загрязняют атмосферу. Затем, присадки дороги: и выбрасывать просто так каждую секунду сотни граммов ценного вещества очень накладно. Очистка? Но это означает принудительное охлаждение отработанной плазмы, а она бы еще могла потрудиться...

Молнии Соколова

Энергохимия явственно распадается на энергетическую и химическую части. О химической мы уже говорили, перейдем к энергетической. В ней вся трудность: как быть с присадками?

Ректор Красноярского государственного университета, доктор физико-математических наук В. Соколов, как и С. Губин, тоже автор сибирской энергохимии. Энергохимическому проекту крупно повезло. В 1969 году группа советских математиков (среди них академики А. Тихонов и А. Самарский) и физиков получила диплом на открытие. Оно давало путь второму поколению МГД-генераторов: с так называемым Т-слоем. Системам, которые могли бы действовать без досадных присадок.

История открытия Т-слоя удивительна, и хотя бы вкратце ее стоит рассказать.

Вначале о новом инструменте научного познания, о так называемом «вычислительном эксперименте». Странное словосочетание! Казалось бы, эксперимент — это удел физиков (если говорить, как в нашей повести, о плазме), а вычисления, расчеты должны числиться по ведомству математиков.

Рассуждая прямолинейно, можно ту же мысль выразить и по-иному: эксперимент обычно проводят тогда, когда сложное физическое явление не поддается расчету. А уж если расчет возможен, то тут эксперимент вроде бы становится лишним.

Однако подобный ход мысли уязвим. Теперь физики часто имеют дело со столь сложными объектами нелинейной природы, что отдельно взятые ни расчет, ни эксперимент не помогают. Выразимся более определенно. Очень часто оказывается, что натурный эксперимент невыполним, настолько он сложен, дорог и рискован, а существующие методы расчета не в состоянии описать явление с необходимой точностью. (Увы! То «золотое время», когда можно было обойтись сравнительно несложным математическим аппаратом и получить ответ «на пальцах», проходит, если не прошло!)

Именно так обстояло дело во времена, когда человек начинал овладевать ядерной энергией. Эксперименты с ядерным горючим таили в себе риск катастрофического взрыва, а классическая математика обнаружила свое бессилие в решении возникших проблем. Вот тогда-то, видимо впервые, и выручил новый подход к делу — вычислительный эксперимент.

Но вернемся к нашей истории.

 <<<     ΛΛΛ     >>>   

Чирков Ю. Занимательно об энергетике науки 12 холодного
Где вода в 38 градусов
Оставленные им как завещание будущим поколениям ученых хотя я верю в будущее атомной энергии
Произошло великое вымирание динозавров они исчезли
В этом смысле топливный элемент

сайт копирайтеров Евгений