Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Характерная особенность поведения частиц и античастиц - их аннигиляция при столкновении. Типичный пример - взаимоуничтожение электрона и позитрона с выделением энергии при рождении двух фотонов.

В сильных и электромагнитных взаимодействиях имеется полная симметрия между частицами и античастицами - все процессы, протекающие с первыми, возможны и аналогичны для вторых. Подобно протонам и нейтронам их античастицы могут образовывать антиядра. В принципе можно представить себе и антиатомы, и даже большие скопления антивещества.

Классификация условно элементарных частиц. В соответствий с четырьмя видами фундаментальных взаимодействий различают соответственно четыре вида элементарных частиц: адроны, участвующие во всех взаимодействиях, лептоны, не участвующие. Только в сильном (а нейтрино и в электромагнитном), фотон, участвующий только в электромагнитном взаимодействии, и гипотетический гравитон - переносчик гравитационного взаимодействия.

Адроны - общее название для частиц, наиболее активно участвующих в сильных взаимодействиях. Название происходит от греческого слова "сильный, крупный". Все адроны делятся на две большие группы - барионы и мезоны.

Барионы - это адроны с полуцелым спином. Самые известные из них - протон и нейтрон. Одним из свойств барионов, отличающим их от других частиц, можно считать наличие у них сохраняющегося барионного заряда, введенного для описания опытного факта постоянства во всех известных процессах разности между числом барионов и антибарионов.

Мезоны - адроны с целым спином. Их барионный заряд равен нулю. Адронов насчитывается около 350. Большинство из них крайне нестабильны и распадаются за время порядка 10 -23 С. Столь короткоживущие частицы не могут оставить следов в детекторах. Обычно их рождение обнаруживают по косвенным признакам. Например, изучают реакцию аннигиляции электронов и позитронов с последующим рождением адронов. Изменяя энергию столкновения, обнаруживают, что при каком-то ее значении выход адронов резко увеличился. Данный факт можно объяснить тем, что в промежуточном состоянии родилась частица. Потом она мгновенно распадается на другие адроны, которые и регистрируются. Такие короткоживущие частицы называются резонансами. Большинство барионов и мезонов - резонансы.

Адроны не являются истинно элементарными частицами. Они имеют конечные размеры и сложную структуру. Барион состоит из трех кварков, мезоны построены из кварка и анти-кварка, кварки удерживаются внутри адронов глюонньм полем. В принципе теория допускает существование других адронов, построенных из большего числа или из одного глюонного поля.

Первоначально кварковая модель была предложена для наведения порядка в слишком многочисленном семействе адронов. Эта модель включила кварки трех типов или ароматов (в дальнейшем оказалось, что их больше). С помощью кварков удалось разделить адроны на группы, называемые мультиплетами. Частицы одного мультиплета имеют близкие массы.

5.8. Строение атомного ядра

Нуклонный уровень. Примерно через 20 лет после того, как Резерфорд "разглядел" в недрах атома его ядро, был открыт нейтрон - частица по всем своим свойствам такая же, как ядро атома водорода -протон, но только без электрического заряда. Нейтрон оказался чрезвычайно удобен для зондирования внутренности ядер. Поскольку он электрически нейтрален, электрическое поле обстреливаемого ядра не отталкивает его - соответственно даже медленные нейтроны могут беспрепятственно приблизиться к ядру на расстояния, при которых начинают проявляться ядерные силы. После открытия нейтрона физика микромира двинулась вперед семимильными шагами.

Вскоре после вышеупомянутого открытия два теоретика - немецкий физик Вернер Гейзенберг и советский Дмитрий Иваненко выдвинули гипотезу о том, что атомное ядро состоит из нейтронов и протонов. На этом постулате базируется современный взгляд на строение атома.

Протоны и нейтроны объединяются словом нуклон. Протоны - это элементарные частицы, которые являются ядрами атомов легчайшего элемента - водорода. Число протонов в ядре равно порядковому номеру элемента в таблице Менделеева и обозначается Z (число нейтронов - N). Протон имеет положительный электрический заряд, по абсолютному значению равный элементарному электрическому заряду. Он примерно в 1836 раз тяжелее электрона. Протон состоит из двух м-кварков с зарядом Q = +2/3 и одного d-кварка с Q = -1/3 , связанных глюонньм полем. Он имеет конечные размеры порядка 10-13 см, хотя его нельзя представить как твердый шарик, скорее он напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.

Электрический заряд нейтрона равен 0, масса его - примерно 940 МэВ. Нейтрон состоит из одного u-кварка и двух d-кварков. Эта частица устойчива только б составе стабильных атомных ядер, свободный нейтрон распадается на электрон, протон и электронное антинейтрино. Период полураспада нейтрона (время, за которое распадается половина первоначального количества нейтронов) равен примерно 12 мин. В веществе в свободном виде нейтроны существуют еще меньше времени вследствие сильного поглощения их ядрами. Как и протон, нейтрон участвует во всех видах взаимодействий, в том числе в электромагнитном: при общей нейтральности вследствие сложного внутреннего строения в нем существуют электрические токи.

В ядре нуклоны связаны силами особого рода - ядерными. Одна из характерных их особенностей - короткодействие: на расстояниях порядка 10-15 м и меньше они превышают любые другие силы, вследствие чего нуклоны не разлетаются под действием электростатического отталкивания одноименно заряженных протонов. При больших расстояниях ядерные силы очень быстро уменьшаются до нуля.

Механизм действия ядерных сил основан на том же принципе, что и электромагнитных - на обмене взаимодействующих объектов виртуальными частицами.

Виртуальные частицы в квантовой теории - это частицы, которые имеют такие же квантовые числа (спин, электрической и барионной заряды и др.), как и соответствующие реальные частицы, но для которых не выполняется обычная связь между энергией, импульсом и массой.

Кварки. Гипотезу кварков предложил в 1967 г. американский физик-теоретик М. Гелл-Ман (р. 1929). Кварк - частица со спином 1/2 и дробным электрическим зарядом, составной элемент адронов. Это название было заимствовано М. Гелл-Маном в одном из фантастических романов и означает нечто пустяковое и странное.

Помимо спина, кварки имеют еще две внутренние степени свободы - "аромат" и "цвет" (степень свободы - независимое возможное изменение состояния физической системы, обусловленное вариациями ее параметров). Каждый кварк может находиться в одном из трех цветовых состояний, которые условно называют красным, синим и желтым (только для удобства - никакого отношения к оптическим свойствам это не имеет). В наблюдаемых адронах кварки скомбинированы таким образом, что возникающие состояния не несут цвета -являются "бесцветными". Ароматов известно пять и предполагается наличие шестого. Свойства кварков разных ароматов различны.

Обычное вещество состоит из легких и- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки создаются искусственно или наблюдаются в космических лучах. Здесь слова "создаются" и "наблюдаются" нельзя понимать буквально - ни один кварк не был зарегистрирован в свободном виде, их можно наблюдать только внутри адронов. При попытке выбить кварк из адрона происходит следующее:

вылетающий кварк рождает на своем пути из вакуума пары кварк - антикварк, расположенные в порядке убывания скоростей. Один из медленных кварков занимает место исходного, а тот вместе с остальными рожденными кварками и антикварками образует адроны.

5.9. Распад и синтез ядер

Дефект массы и энергия связи. Масса ядра определяется массой входящих в его состав нейтронов и протонов. Поскольку любое ядро состоит из Z протонов и N = A -Z нейтронов, где А - массовое число (число нуклонов в ядре), то на первый взгляд масса ядра должна просто равняться сумме масс протонов и нейтронов. Однако, как показывают результаты измерений, реальная масса всегда меньше такой суммы. Их разность получила название дефекта массы ?m.

Энергия - одна из важнейших характеристик протекания любых физических процессов. В ядерной физике ее роль особенно велика, поскольку незыблемость закона сохранения энергии позволяет делать достаточно точные расчеты даже в тех случаях, когда многие детали явлений остаются неизвестными.

Разорвать ядро на отдельные нуклоны можно, лишь введя в него извне каким-либо способом энергию не меньше той, что выделилась в процессе его образования. Это и есть полная энергия связи ядра Eсв. С энергией связи непосредственно связано происхождение дефекта массы. В соответствии с формулой

 <<<     ΛΛΛ     >>>   

Момент распада абсолютно невозможно
En u em соответственно энергии стационарных состояний атома до
Характерная особенность поведения частиц нейтронов нейтрон

сайт копирайтеров Евгений