Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому - с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движения микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы наблюдаемые на опыте волновые свойства частиц. Основным должно быть уравнение относительно волновой функции, так как именно она, или, точнее, ее квадрат определяет вероятность нахождения частицы в заданный момент времени в заданном определенном объеме. Кроме того, искомое уравнение должно учитывать волновые свойства частиц, т. е. должно быть волновым уравнением.

Основное уравнение квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и многие уравнения физики, не выводится, а постулируется. Правильность уравнения Шредингера подтверждается согласием с опытом получаемых с его помощью результатов, что в свою очередь придает ему характер закона природы.

5.6. Принципы причинности и соответствия

Из соотношения неопределенностей иногда делают идеалистический вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинности - принципу классического детерминизма, по известному состоянию системы в некоторый момент времени (полностью определяемому значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно описать ее состояние в любой последующий момент. Следовательно, классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние в последующий момент - следствие.

С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса, поэтому делается вывод о том, что в начальный момент времени состояние системы точно не определяется. Если же состояние системы точно не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности. Однако никакого нарушения принципа причинности применительно к микрообъектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъекта приобретает совершенно иной смысл, чем в классической механике. В квантовой механике состояние микрообъекта полностью определяется волновой функцией. Задание волновой функции для данного момента времени определяет ее значение в последующие моменты. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествующего состояния, как того требует принцип причинности.

В становлении квантово-механических представлений важную роль сыграл выдвинутый Н. Бором в 1923 г. принцип соответствия: всякая новая более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую.

Так, формулы кинематики и динамики релятивистской механики переходят при скоростях, много меньших скорости света, в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но волновыми свойствами макроскопических тел можно пренебречь и для них можно применять классическую механику Ньютона.

5.7. Элементарные частицы

Общие сведения. Ядерная физика изучает структуру и свойства атомных ядер. Она исследует также взаимопревращения атомных ядер, происходящие в результате как радиоактивных распадов, так и различных ядерных реакций. К ядерной физике тесно примыкают физика элементарных частиц, физика и техника ускорителей заряженных частиц, ядерная энергетика.

Ядерно-физические исследования имеют огромное чисто научное значение, позволяя продвигаться в понимании строения материи, и в то же время чрезвычайно важны в практическом отношении (в энергетике, медицине и т. д.).

Элементарные частицы - первичные, неразложимые частицы, из которых, по предположению, состоит вся материя. В современной физике этот термин обычно употребляется не в своем точном значении, а в менее строгом - для наименования большой группы мельчайших частиц материи, подчиненных условию, что они не являются атомами или атомными ядрами, за исключением протона. К элементарным частицам относятся протоны, нейтроны, электроны, фотоны, пи-мезоны, мюоны, тяжелые лептоны, нейтрино трех типов, странные частицы (К-мезоны, гипероны), разнообразные резонансы, мезоны со скрытым очарованием, "очарованные" частицы, промежуточные векторные бозоны и т.п. - всего более 350 частиц, в основном нестабильных. Их число продолжает расти по мере расширения наших знаний. Большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку являются составными системами. Общее свойство всех этих частиц заключается в том, что они представляют собой специфические формы существования материи, не ассоциированной в ядра и атомы.

Массы большинства элементарных частиц имеют порядок величины массы протона, равной 1,7 • 1024 г. Размеры протона, нейтрона, пи-мезона и других адронов - порядка 10-13 см, а электрона и мюона не определены, но меньше 10-16 см. Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения. Наиболее важное квантовое свойство всех элементарных частиц - способность испускаться и поглощаться при взаимодействии с другими частицами.

Характеристики элементарных частиц. В зависимости от времени жизни частицы делятся на стабильные (электрон, протон, фотон и нейтрино), квазистабильные (распадающиеся при электромагнитном и слабом взаимодействиях, время их жизни больше 10-20 c) и резонансы (частицы, распадающиеся за счет сильного взаимодействия, типичное время жизни 10-22 - 10-24 с).

Общими для всех элементарных частиц характеристиками являются масса, время жизни, электрический заряд, спин и др.

Элементарные частицы - характеризуются моментом импульса. Согласно квантовой механике, момент импульса системы может принимать не любые, а дискретные значения, его скачки равняются постоянной Планка, поэтому его измеряют в единицах этой постоянной (дискретность возможных значений момента совершенно незаметна в обычной жизни, поскольку постоянная Планка очень мала). Момент, измеренный в таких единицах, называется спином. Спин может принимать целые или полуцелые значения. В соответствии опять же с квантовой механикой проекция момента на какую-либо ось тоже имеет дискретные значения. Разумеется, такая дискретность находится далеко за пределами измерительных возможностей обычной механики. Иное дело - объекты микромира, для них дискретность значений вектора момента и его проекций играет существенную роль.

Характеристики элементарных частиц, принимающие дискретные значения, принято называть квантовыми числами. Различают спиновое, орбитальное, магнитное и другие квантовые числа.

Помимо указанных величин, элементарные частицы дополнительно характеризуются еще рядом квантовых чисел, которые называются внутренними. Это барионный и лептонный заряды, чётность, а также кварко-вые ароматы - характеристики, определяющие тип кварка, такие, как изоспин, странность, "очарование", "красота", цвет. Внутренние квантовые числа вводятся для того, чтобы формализовать закономерности, экспериментально наблюдаемые в процессах, происходящих в микромире.

Истинно элементарные частицы. На сегодняшний день с теоретической точки зрения известны следующие истинно элементарные (на данном этапе развития науки считающиеся неразложимыми) частицы: кварки и лептоны (эти разновидности относятся к частицам вещества), кванты полей (фотоны, векторные бозоны, глюоны), а также частицы Хиггса.

Каждая из пар лептонов объединяется с соответствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, отличаются лишь массы: второе тяжелее первого, третье тяжелее второго. Предполагается, что в природе встречаются в основном частицы первого поколения, а остальные можно создать искусственно на ускорителях заряженных частиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих половинный спин частиц вещества, к истинно элементарным частицам относятся частицы со спином 1. Это кванты полей, создаваемых частицами вещества. Массивные W-бозоны являются переносчиками слабых взаимодействий между кварками и лептонами. Глюоны - переносчики сильных взаимодействий между кварками. Как и сами кварки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях некоторых реакций. Теория кварков и глюонов называется квантовой хромодинамикой.

Частица с предполагаемым спином 2 - это гравитон, его существование предсказано теоретически, но обнаружить его будет чрезвычайно трудно, так как он очень слабо взаимодействует с веществом.

Наконец, к истинно элементарным частицам относятся частицы Хиггса, или Н-мезоны, и гравитино, они не обнаружены на опыте, но уих существование предполагается во многих современных теоретических моделях.

 <<<     ΛΛΛ     >>>   

Переход атома в состояние с большей энергией
Устройства ядерных частиц
В ходе бета плюс распада заряд ядра уменьшается на 1

сайт копирайтеров Евгений