Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

В книге ван Фраассена "Научный образ" говорится о том, что "подлинное значение теории для работающего ученого определяется тем, как ее можно использовать в разработке эксперимента" (стр. 73). Он продолжает обсуждать пример Милликена и пишет, что "эксперимент - это продолжение теории другими средствами"* . Может показаться, что эти два замечания противоречат друг другу. Может быть, у него было представление об опыте, который сам вытаскивал себя за волосы, осуществляя теорию другими средствами, для того, чтобы делать больше экспериментов. Это не такое уж плохое описание примера Милликена, потому что с использованием значения е становятся возможными совершенно различные эксперименты.
Афоризм относительно "теории другими средствами" основан на следующей идее. Теория предполагала, что существует электрон, и электроны имеют определенный заряд. Но здесь в теории существует пробел: никакое теоретическое рассуждение не даст нам значения е. Мы выдвигаем теорию "другими средствами", проводя экспериментальное определение величины е. Это очень привлекательная метафора, но мне не хочется придавать ей большого значения. Кавендиш определил значение гравитационной константы g , но не продвинул ньютоновской теории ни на йоту. Конечно, можно посмотреть на вопрос следующим образом. Ньютоновская теория содержит утверждение о том, что сила притяжения F между двумя массами m1 и m2, находящимися на расстоянии r друг от друга, определяется как
F=m1*m2/g*r^2
Но значение константы g просто не является частью теории. Найдя значение g , Кавендиш не развил теории. На самом деле g - уникальная природная константа. Как я уже вкратце замечал, большая часть физических констант связана законами физики с другими константами. Это важный факт для определения каждой константы. Однако g не связана вообще ни с чем более.
Конечно, мы надеемся, что g окажется связанной с чем-либо. Сила тяжести, электромагнитные силы, так же как сильные и слабые взаимодействия, может быть, и будут объяснены когда-нибудь в рамках одной правдоподобной теории или, например, с помощью идеи, вытекающей из некоторых размышлений П. А. М. Дирака пятидесятилетней давности. Предположим, что возраст вселенной около 1011 лет, тогда можно предположить, что сила тяжести становилась меньше по сравнению с электромагнитной силой на 10-11 своей величины каждый год. Эту разницу вполне можно замерить с помощью современной техники. Такие измерения могут научить нас очень многому о мире, но это не будет продолжением ньютоновской теории или какой-либо другой теории, другими средствами.
Вклад Милликена в теорию электрона более значителен, чем вклад Кавендиша в теорию гравитации, не потому что он заполнил пустоту в теории. Скорее потому, что он подтвердил существование минимального электрического заряда. Теперь очевидно, что я разделяю убеждение ван Фраассена, отвергавшего модель науки, в которой экспериментаторы сидят рядом с теоретиками, ожидая, когда их попросят проверить, подтвердить или опровергнуть теории. Конечно, им приходится часто подтверждать теории, даже если это, как в случае с Милликеном, и не является изначальным мотивом. Мне представляется, что отношение опыта Милликена к теории состоит в том, что он подтвердил широкий спектр возможных размышлений по поводу того, что существует минимальный отрицательный электрический заряд, скорее всего, связанный с гипотетическим объектом, называемым электроном. Он также определил величину этого минимального заряда, но это число не имело отношения к теории. Как говорится в приведенном выше фрагменте из нобелевской речи, значение этого открытия заключалось в более точном определении других констант, которые, в свою очередь, оказали не очень большое влияние на развитие теории.

Существуют ли точные природные константы?

Единственным великим философом, знакомым с измерением, был Ч. С. Пирс, который долгое время работал в службе береговой и геодезической разведки США и Лоуэлловской обсерватории в Бостоне. Он разработал прекрасные маятниковые эксперименты для нахождения g . В отличие от кабинетных ученых, он с презрением относился к постулату о том, что "некоторые непрерывные величины имеют точные значения". В 1892 году в эссе "Пересмотр учения о необходимости", вошедшем в большинство антологий Пирса, он писал следующее:
"Тому, кто находится за сценой и знает, что наиболее точные сравнения масс, длин и углов, далеко превосходящие по точности все другие измерения, все же менее точны, чем банковские счета, и то, что обычные определения физических констант, которые появляются каждый месяц в журналах, стоят в одном ряду с измерениями драпировщиками ковров и занавесей, идея математической точности, демонстрируемая в лаборатории, покажется просто смешной".
У Пьера Дюгема можно найти похожее положение. Он считал природные константы артефактами нашей математики. Мы порождаем теории, в которых есть пробелы, такие как g . Но конкретное значение g не есть объективный факт о нашей вселенной. Это качественный факт о том, что наша вселенная может быть представлена определенными математическими моделями и, исходя из этого, возникает другой качественный факт о том, что существует нечто вроде точного числа, которое согласуется наилучшим образом с нашей математикой. Эта мысль лежит в основе язвительного антиреализма Дюгема относительно теорий и природных констант.

Подтверждение в смысле наименьших квадратов

Не были ли введены в заблуждение Дюгем и Пирс тем, что имели дело с периодом, когда константы были не точны? Не совсем так. Посмотрим на то, что на протяжении последнего десятилетия было множеством наиболее широко принятых констант, рекомендуемых международному сообществу комитетом по данным науки и технологии. У редакторов, Коэна и Тэйлора, было большое количество фундаментальных констант, основанных на работе главных национальных лабораторий мира. Данные подразделялись на следующие типы: "более точные", "менее точные БКЭД данные" и "менее точные КЭД данные". КЭД обозначало работу с использованием квантовой электродинамики, а БКЭД обозначало работу без использования квантовой электродинамики. Наконец, было еще некоторое количество "других менее точных величин". В последнем разделе мы встречаем нашу знакомую, гравитационную константу g . Относительно нее известно, что "в настоящее время не существует каких-либо верифицированных теоретических уравнений, связывающих g с какой-либо другой физической константой. Таким образом, она может и не иметь непосредственного отношения к результирующим значениям нашего упорядочивания" (стр. 698).
Что мы в основном делаем с другими константами - это определяем отношения пар констант. Таким образом, открытие в 1962 году эффекта Джозефсона (см. гл. 13), произвело радикальное изменение в точных измерениях, поскольку этот эффект предоставил удивительно простой способ определения величины e/h, отношения заряда электрона к константе Планка. К 1972 году точное значение отношения массы электрона к массе мюона стало известно с точностью до пятого знака. Само это отношение было определено, исходя из других отношений.
В итоге было получено большое количество численных оценок констант, после чего перешли к оценкам по методу "наименьших квадратов". Грубо говоря, было постулировано, что все теории в рамках определенной группы являются истинными (например, КЭД или БКЭД). Таким образом, образовалось большое количество уравнений, связывающих большое количество чисел. Естественно, что числа не вполне подходили ко всем уравнениям. Затем мы нашли точное приписывание чисел, которое делает истинными все уравнения и которое минимизирует ошибки во всех наилучших независимых оценках различных констант и отношений констант. Естественно, что все на самом деле несколько более сложно, поскольку мы приписываем нашим измерениям разные уровни точности. "Наилучшее соответствие", вместе с которым автоматически получается оценка частных ошибок, предоставляет одну оценку всех констант, за исключением, быть может, нескольких одиночек, таких как "первая" константа науки, то есть g .
Эффект Джозефсона изменил одно множество первоначальных оценок, которые все были "скорректированы". Этот процесс никогда не кончается: "Тем не менее, после опубликования поправки 1973 года число новых экспериментов было пополнено, давая улучшенные значения для некоторых констант... Нужно понимать, однако, что поскольку поправки, основанные на методе наименьших квадратов, связаны сложным образом и изменение в измеренной величине одной константы обычно приводит к соответствующим изменениям в значениях других, необходимо быть осторожным при выполнении вычислений, использующих таблицу поправок 1973 года и результаты более поздних экспериментов."
Несомненно, что когда появятся следующие приближения по методу наименьших квадратов (а это произойдет очень скоро), целая сеть из теории и чисел покажется на некоторое время более удовлетворительной. И все же скептик может настаивать на том, что все, что при этом делается, - это нахождение наиболее удобного набора чисел, которые можно подогнать под наши константы. Может быть, и всю эту процедуру можно представить по-дюгемовски. В любом случае, мы вряд ли сможем назвать эту специфическую форму определения констант "продолжением теории другими средствами".

Измерение всего

Кун говорит, что страсть к измерениям относительно нова. При этом он цитирует Кельвина: "Я часто говорю, что когда вы можете измерить то, о чем вы говорите, вы знаете что-то об этой вещи. Когда вы не можете ее измерить, ... то ваши знания скудны и неудовлетворительны". Поскольку Кельвин говорил это часто, существовали и искаженные версии его слов. Карл Пирсон вспоминает "утверждение Кельвина о том, что у вас может быть только плохое и неясное представление о явлении до тех пор, пока вы не измерили его и не превратили в числа". Если кто-то думает, что энтузиазм по поводу измерений остался не затронутым идеологией, то пусть обратит внимание на следующий кусок из длинных графоманских виршей о лаборатории Райерсона в Чикаго, ставшей местом проведения опытов Майкельсона:

Это теперь Райерсона закон, что миру назначил цену:
Мерять учись, человек, а не то проиграешь войну.
Пирсон, Кельвин и лаборатория Райерсона существовали в конце девятнадцатого века, который начался просто с водопада чисел. Теперь мир воспринимается более количественным образом, чем когда-либо. Мир представляется составленным из численных величин. Каковы были последствия фетишизации точности измерения для развития естественных наук? Чтобы ответить на этот вопрос, мы должны обратиться к уже упоминавшемуся эссе Куна "Функция измерения в современной физической науке", переизданному в его "Существенном напряжении" ("The Essential Tension").

Функция измерения

Почему нужно измерять? Один из ответов можно найти в попперовской диалектике гипотез и опровержений. В соответствии с этим мнением, эксперименты служат для того, чтобы проверять теории. Лучшие эксперименты подвергают теории наибольшему риску. Следовательно, точные измерения должны соответствовать лучшим экспериментам, поскольку измеряемые числа скорее всего, будут конфликтовать с предсказанными.
Ребенок в сказке Андерсона сказал, что король гол. Кун подобен этому ребенку. Поскольку, несмотря на всю пышность идеи о гипотезах и опровержениях, то, о чем говорит Поппер, почти никогда не происходит. Точные измерения делаются не для того, чтобы проверять теории. Кавендиш вообще не проверял теории тяготения, он определял g . Физо получил лучшее значение скорости света, а затем использовал технологию, которую он разработал для этой цели, чтобы исследовать (а не проверять) возможность того, что свет может иметь различные скорости, которые будут зависеть от скорости среды, в которой он движется. Только 60 лет спустя Эйнштейн случайно обнаружил, что этот опыт служит "решающей проверкой". В более банальных делах числа, определяемые в лаборатории, обычно не используются для того, чтобы подвергать суду теорию. Как настаивал Кун, эксперименты обычно имеют успех, если в них с некоторой точностью получаются числа, которые ученые более или менее ожидали получить.
В таком случае, большинство измерений есть то, что Кун называет нормальной наукой. Хорошие измерения требуют новых технологий и, таким образом, предполагают решения множества загадок экспериментального характера. Измерения проясняют детали известного материала. Следует ли из этого, что фетишизация измерений, пик которой пришелся на эпоху Кельвина, не имела никакого воздействия на науку, за исключением того, что делала более интенсивной научную деятельность? Совсем не так. Кун суммирует функцию измерения следующим образом. "Я верю, что в девятнадцатом веке математизация физики породила в большой степени уточненные профессиональные критерии решения проблем и одновременно очень сильно увеличила эффективность профессиональных процедур верификации" (стр. 220). В сноске он упоминает "эзотерические качественные различия", которые привели к отбору трех проблем: фотоэлектрический эффект, излучение черного тела и удельные теплоемкости. Квантовая механика дала решение этим проблемам. Кун отмечает ту скорость, с которой первая версия квантовой теории была принята "профессионалами". Он написал бесподобную книгу о второй из этих проблем, "Теория твердого тела и квантовая прерывность (1894-1912)".
Мои комментарии по поводу книги Куна таковы. Нужно отличать функцию измерения от заявляемых поводов для измерения. У экспериментаторов самые разные причины для проведения измерений. Усилия по измерению вознаграждаются, когда экспериментаторы изобретают остроумные системы измерения. Однако практика измерения имеет побочный продукт, которого ни в коей мере не ожидал Кельвин, Пирсон и лаборатория Райерсона. Вдруг оказывается, что некоторые числа, полученные в экспериментах, вопреки ожиданиям не согласуются. Это - аномалия, которую иногда даже называли "эффектом". Чем больше фетишизировалась точность, тем чаще встречались "эзотерические трудности". На самом деле, их появляется не так уж много, и эти завораживающие редкие аномалии составляют фокус профессионального решения проблем. Когда кто-либо предлагает новую теорию, ее задача - объяснить эти "эзотерические различия". Затем существуют быстрые тесты, которые должна пройти теория. Они являются эффективными процедурами верификации, о которых пишет Кун, и они являются частью его позиции относительно научных революций.
Не будем переоценивать эту историю о функциональности. Это не вся история. Конечно, множество экспериментов изобретается специально для того, чтобы проверять теории. Создается специальная аппаратура, чтобы сделать проверки более убедительными. Философия тоже оказывает некоторое воздействие. В дни Кельвина процветал старый позитивизм, который искал факты, и когда описывались эксперименты, говорили о том, что пытаются найти сложные числовые факты. Сейчас процветает философия Поппера, и когда кто-нибудь описывает свой эксперимент, то говорит, что пытается проверить теорию (иначе он не получит материальной поддержки!). Добавим к этому, что куновское описание измерений существенно не отличается от описания Поппера. Точные измерения обнаруживают явления, которые не согласуются с теориями, в результате чего предлагаются новые теории. Но в то время как Поппер рассматривает это как явную цель экспериментатора, Кун считает это побочным продуктом. На самом деле, его описание этой "функции" очень сходно с тем, что в социальных науках называлось функционализмом.

Функционализм

Часто говорят, что философия Куна превратилась в социологию. Это неправильно, если имеется в виду эмпирическая социология. Кун не получил ни одной теоремы вроде следующей: "Если в лаборатории работает более, чем N человек, а доля молодых специалистов, приходящих на работу в лабораторию и оставляемых здесь, есть k, то доля тех, кто переходит на другую работу, есть 1-k". Хотя Кун и не эмпирический социолог, он до некоторой степени старомодный спекулятивный социолог. Некоторые из таких социологов, называемых функционалистами, обнаруживают иногда тот или иной устоявшийся порядок в обществе или субкультуре. Они не будут спрашивать, как этот порядок возник, но захотят узнать, почему он сохраняется. Будет сделано предположение, что исходя из других свойств группы, этот порядок обладает некоторыми достоинствами, которые способствуют сохранению самого общества. Эта функция данного порядка. Она может быть непонятной членам общества, но мы должны понимать этот порядок в терминах его функций.
Так же и Кун, который отмечает возрастающую роль измерений в физике. Он предполагает, что только к 1840 году математизация стала всеобъемлющей. Кун спрашивает не то, как это произошло, а почему это сохраняется. Циники могут предположить, что измерения предоставляют ученым некое занятие. Кун говорит, что аномалии, которые неизбежно возникают в области точных измерений, фокусируют дальнейшую деятельность ученых даже на том этапе, который он называет кризисом. Они также определяют то, что означает для теории быть хорошей заменой предшествующей теории. Таким образом, измерение - важная ниша в куновском представлении о цикле "нормальная наука - кризис - революция - новая нормальная наука".

Официальная позиция Кун любознателен и любит сокрушать авторитеты. Точные измерения не укладываются в его концепцию, поскольку, по-видимому, точные измерения констант стали самодостаточным миром исследований. Благодаря эффекту Джозефсона, "1 июля 1972 года Национальное Бюро Стандартов США приняло точное значение 2e/h = 483593,420 ? 109 Гц/В для установления узаконенного или поддерживаемого значения вольта в США" (стр. 667). Существует, по крайней мере, еще 11 других таких же определений вольта, по данным 11 больших национальных лабораторий в Японии, Канаде и т. д. Не было бы абсурдным существование и 12 различных региональных определений "вольта", поскольку проблема частично заключается в том, что когда экспериментатор хочет получить точное значение вольта, он должен обратиться в ближайшую лабораторию или применить "передвижные температурно-управляемые транспортные стандарты для вольта". Вот пример одной философии измерений: она появляется в конце обзора Коэна и Тейлора, упоминавшегося выше, "Приближение с помощью метода наименьших квадратов, полученное в 1973 году": "Мы считаем, что в области фундаментальных констант должна быть проведена большая работа и что романтике следующего десятичного знака нужно отдаться со всей страстью не ради ее самой, но ради новой физики и более глубокого понимания природы, которая здесь еще скрывается от нас" (стр. 726).

15. БЭКОНИАНСКИЕ ТЕМЫ

Фрэнсис Бэкон (1560-1626) был первым философом экспериментальной науки. Хотя он и не внес особого вклада в научное знание, большинство его методологических идей живы и поныне, как, например, идея "критического эксперимента".
Бэкон родился в семье придворного во времена долгого правления Елизаветы I. ("Когда королева спросила его, сколько ему лет, то он, хотя был еще совсем ребенком, учтиво ответил, что ему 'на два года меньше, чем благодатному правлению Ее Величества'"). Он был главным судебным обвинителем своей эпохи, преследуя в равной степени "преступников и интересы выгоды". ("Он никогда не унижал преступивших закон и даже не стремился возвышаться над ними, а был мягкосердечен, как будто одним глазом сурово смотрел на типический случай, а другим глазом, полным жалости и сострадания, - на личность). Он брал взятки и был уличен ("Я был самым справедливым судьей в Англии за последние 50 лет, но это был самый справедливый приговор парламента за последние 200 лет").
Бэкон видел, что наблюдение природы учит нас меньше, чем эксперимент. ("Секреты природы открываются нам гораздо охотнее под напором нашего умения, чем когда мы идем у них на поводу"). Он был до некоторой степени прагматиком. ( "Следовательно, в данном случае истина и польза - одно и то же, а сами исследования имеют большую ценность как залог истины, чем как средство сделать жизнь удобнее"). Он призывает нас экспериментировать, чтобы "растрясти складки природы". Нужно "подергать льва за хвост". Бэкон ссылается не больше не меньше как на царя Соломона: "Слава Божия - облекать тайною дело, а слава царей - исследовать дело"*. Он учил, что истинный смысл этих слов в том, что каждый исследователь есть царь.

Муравей и пчела

Бэкон презирал схоластические и книжные попытки выводить знание из начальных принципов. Вместо этого, полагает он, мы должны создавать понятия и находить истины более низкого уровня общности. Наука должна строиться снизу вверх. Бэкон не предугадал ценности теоретизирования, порождения гипотез и математических вычислений, которые с тех пор научились использовать, не ожидая, пока какая-либо система проверок станет доступной. Но когда он выражает презрение по отношению к авторам, которые выходят за пределы фактов, он имеет в виду не новую науку, а схоластику. Тем не менее, к нему плохо относились многие современные философы, признававшие примат теории. Они называли его индуктивистом. И все же именно Бэкон сказал, что "делать заключение исходя из простого перечисления примеров (как делают логики) без испытания его посредством контрпримеров - значит делать неверное заключение". Бэкон называл индукцию через простое перечисление ребячеством. Будучи философом эксперимента, Бэкон не очень хорошо укладывается в простую дилемму индуктивизма и дедуктивизма. Он стремился исследовать природу во что бы то ни стало. "Не следует разочаровываться или смущаться, если эксперименты, которые вы пытаетесь проделать, не отвечают вашим ожиданиям. Ведь несмотря на то, что успешный эксперимент и был бы более приемлемым, неуспешный часто более поучителен". Таким образом, Бэкон уже понимал обучающую ценность опровержения. Он видит, что новая наука будет союзом экспериментальной и теоретической деятельности. В духе своего времени он выражает мораль аналогией из жизни насекомых:
"Экспериментаторы подобны муравьям, они только собирают и используют; теоретики подобны паукам, которые ткут свои паутины из себя самих. Пчела выбирает средний путь: она собирает материал с полевых и садовых растений, но преобразует и переваривает его, используя свои собственные силы. Подлинное занятие философией чем-то похоже на этот путь, поскольку оно основывается не только на силе ума, но и на материале естественной истории и механических экспериментов, и не просто целиком закладывает этот материал в память, но лишь изменив и переварив его в своем восприятии".
"Следовательно, - продолжает он, - основываясь на более близкой и чистой связи между этими двумя способностями, экспериментальной и рациональной (которая никогда еще не была реализована), можно надеяться на многое".

В чем же величие науки?

Союз между экспериментальными и рациональными способностями во времена пророчеств Бэкона едва зарождался. В наше время Пол Фейерабенд спрашивал, во-первых, "Что такое наука?", а во-вторых, "В чем величие науки?" Я не нахожу, что второй вопрос действительно важен, но, поскольку мы иногда видим нечто великое в естественной науке, можно ответить на этот вопрос словами Бэкона. Наука - это союз двух способностей, рациональной и экспериментальной. В 12-й главе я подразделил то, что Бэкон называл рациональными способностями, на теоретизирование и вычисление, утверждая, что это разные способности. Величие науки заключается в том, что она есть сотрудничество между различными типами исследователей: теоретиками, вычислителями и экспериментаторами.
Бэкон привык бичевать догматиков и эмпириков. Догматики были людьми чистой теории. Большинство догматиков в те дни имели спекулятивный склад ума, многие эмпирики были по-настоящему талантливыми экспериментаторами. Каждая из групп исследователей поодиночке приобрела мало знания. Что характерно для научного метода? Он соединяет эти две возможности с помощью третьего человеческого дара, того, который я назвал артикуляцией и вычислением. Даже чистые математики приобрели что-то от этого сотрудничества. После успехов в Древней Греции математика оставалась бесплодной до тех пор, пока она вновь не стала "прикладной". Даже теперь, несмотря на то, что большая часть чистой математики все еще имеет силу, большинство тех, кто внес вклад в глубокие "чистые" идеи - Лагранж, Гильберт или кто-либо еще, были как раз теми исследователями, которые были ближе всего к фундаментальным проблемам физики того времени.
Замечательный факт, касающийся современной физики, заключается в том, что она создает коллективный человеческий артефакт, давая простор трем фундаментальным человеческим интересам: спекуляции, вычислению и эксперименту. Участвуя во взаимодействии этих трех направлений, она обогащает каждый из них, что иначе было бы невозможно.
Таким образом, мы можем оценить те сомнения по отношению к социальным наукам, которые некоторые из нас разделяют. Эти науки по-прежнему находятся в области догматики и эмпирии. Хотя здесь невероятное количество "экспериментирования", но по сей день оно не выявило ни одного стабильного явления. Здесь существует бесконечное множество спекуляций. Существует даже множество работ по математической психологии или математической экономике, по чистым наукам, которые имеют слабое отношение и к спекуляции, и к экспериментированию. Я далек от того, чтобы как-то оценивать положение дел. Может быть, все эти люди создают новый тип человеческой активности, но многие из нас чувствуют некоторую ностальгию или грусть, когда рассматривают общественные науки. Может быть, это происходит потому, что им не хватает того, чем так хороша относительно молодая физика. Социальные науки не испытывают недостатка в экспериментировании, они не испытывают недостатка в вычислениях, они не испытывают недостатка в теоретизировании, но им не хватает сочетания этих трех компонент. Я подозреваю, что они и не будут сочетаться до тех пор, пока у социальных наук не будет настоящих теоретических объектов, по поводу которых можно теоретизировать, - не просто постулируемых "конструктов" и "концептов", а объектов, которые можно использовать, которые являются частью намеренного создания новых стабильных явлений.

Преимущественные примеры

Незавершенный "Новый органон" Бэкона (1620 г.) содержит интересную классификацию того, что он называл преимущественными примерами (prerogative instances). Среди них поражающие и достойные внимания наблюдения, разного рода измерения, а также использование микроскопов и телескопов, усиливающих наше зрение. Они включают те способы, с помощью которых мы открываем, по сути, невидимое, используя их взаимодействие с тем, что мы можем наблюдать. Как я заметил в главе 10, Бэкон не говорит о наблюдении, а также не считает важным различать между теми примерами, которые есть просто вu дение, и теми, которые выведены из тонких экспериментов. Конечно, его понимание примеров в целом больше похоже на то, как в современной физике говорят о наблюдении, чем на понятие наблюдения в позитивистской философии.

Критические эксперименты

Четырнадцатый вид примеров Бэкона - это решающие примеры Instantiae crucis, которые позже стали называться критическими экспериментами (crucial experiments).* Более буквальный и, может быть, более точный перевод этого слова был бы "примеры перекрестков" (instances of the crossroads). Старые переводчики используют вместо этого слова "примеры-указатели" ("instances of the fingerposts"), поскольку Бэкон "взял соответствующие слова, напоминающие столбы на развилках, указывающие в нескольких направлениях".
Дальнейшая философия науки сделала критические эксперименты абсолютно решающими. Ситуация стала представляться так, будто соревнуются две теории, причем единственный тест окончательно решает дело в пользу одной теории за счет другой. Стали утверждать, что даже если победившая теория не окажется истинной, по крайней мере, будет отброшена конкурирующая теория. Но это не то, что Бэкон говорит о примерах-указателях. Бэкон ближе к истине, чем более современные теории науки. Он говорит, что примеры-указатели "проливают довольно много света и имеют большой вес, работа по интерпретации порой на них заканчивается или даже завершается ими". Я подчеркиваю слово "порой". Бэкон заявлял, что только иногда критические примеры бывают решающими. В последнее время стало модным говорить, что эксперименты являются критическими только ретроспективно. В свое время они вообще ничего не решают. Так, например, считает Имре Лакатош. Вследствие этого возникла ложная конфронтация. Если бы философы придерживались здравого смысла Бэкона, мы, наверное, избежали бы следующего противоречия: (а) Критические эксперименты решают окончательно и тотчас же приводят к опровержению одной теории, (б) "В науке нет критических экспериментов" (Лакатош II, стр. 211). Конечно, Бэкон по праву не согласился бы с Лакатошем, но он так же бы разошелся и с положением (а).

Примеры Бэкона

 <<<     ΛΛΛ     >>>   

Он начинается с вопроса о значении терминов
Внешняя историясредством лакатоша для понимания объективности научного знания было то
Наблюдениеобщеизвестные факты о наблюдении искажены двумя модными философскими установками
Они придумали для себя кризис рациональности

сайт копирайтеров Евгений