Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Основной отраслью английской промышленности в первой половине XIX века было производство хлопчатобумажных тканей. Новые машины позволяли получать 300 и более процентов прибыли в год и выпускать дешевые ткани, которые продавались по всему миру. Это был колоссальный промышленный бум, производство тканей увеличилось в десятки раз. Однако для новых фабрик требовалось сырье – хлопок; поначалу хлопок был дорог из-за того, что его очистка производилась вручную. В 1806 году американец Эли Уитни создал хлопкоочистительную машину; после этого в южных штатах наступила “эра хлопка”, здесь создавались огромные хлопковые плантации, на которых работали рабы-негры. Таким образом расцвет американского рабства оказался непосредственно связан с промышленной революцией.

К 1840-м годам Англия превратилась в «мастерскую мира», на ее долю приходилось более половины производства металла и хлопчатобумажных тканей, основная часть производства машин. Дешевые английские ткани заполнили весь мир и разорили ремесленников не только в Англии, но и во многих странах Европы и Азии. В Индии от голода погибли миллионы ткачей; вымерли многие большие ремесленные города, такие как Дакка и Ахмадабад. Доходы, на которые раньше существовали ремесленники Европы и Азии, теперь уходили в Англию. Многие государства пытались закрыться от английской товарной интервенции – в ответ Англия провозгласила «свободу торговли»; она всячески – зачастую с использованием военной силы - добивалась снятия протекционистских таможенных барьеров, «открытия» других стран для английских товаров.

В 1870-х годах в развитии мировой экономики наступил знаменательный перелом, этот перелом был связан с колоссальным расширением мирового рынка. В предыдущий период масштабное строительство железных дорог привело к включению в мировую торговлю обширных континентальных областей; появление пароходов намного удешевило перевозки по морю. На рынки огромным потоком хлынула американская и русская пшеница – цены на пшеницу упали в полтора, в два раза. Эти события традиционно называют «мировым аграрным кризисом». Они привели к разорению многих помещиков в Европе – но вместе с тем обеспечили дешевым хлебом миллионы рабочих. С этого времени наметилась промышленная специализация Европы: многие европейские государства теперь жили за счет обмена своих промышленных товаров на продовольствие. Рост населения больше не сдерживался размером пахотных земель; бедствия и кризисы, порождаемые перенаселением, ушли в прошлое. На смену прежним законам истории пришли законы нового индустриального общества.

Промышленная революция дала в руки европейцев новое оружие – винтовки и стальные пушки. Уже давно было известно, что ружья с нарезами в канале ствола придают пуле вращение, отчего дальность увеличивается вдвое, а кучность в 12 раз. Однако зарядить такое ружье с дула стоило немалого труда, и скорострельность была очень низкой, не более одного выстрела в минуту. В 1808 году по заказу Наполеона французский оружейник Поли создал казнозарядное ружье; в бумажном патроне помещались порох и затравка, взрываемая уколом игольчатого ударника. Если бы Наполеон вовремя получил такие ружья, он был бы непобедим – но дело в том, что изготовление казенного затвора требовало ювелирной точности, а у Поли не было высокоточного токарного станка. Позже, когда появился станок с суппортом Модсли, помощник Поли, немец Дрейзе сконструировал игольчатое ружье, которое было в 1841 году принято на вооружение прусской армии. Ружье Дрезе делало 9 выстрелов в минуту – в 5 раз больше, чем гладкоствольные ружья других армий. Дальность выстрела составляла 800 метров – втрое больше, чем у других ружей.

Одновременно произошла еще одна революция в военном деле, вызванная появлением стальных пушек. Чугун был слишком хрупок и чугунные пушки часто разрывались при выстреле; стальные пушки позволяли использовать значительно более мощный заряд. В 1850-х годах английский изобретатель и предприниматель Генри Бессемер изобрел бессемеровский конвертер, а в 60-х годах французский инженер Эмиль Мартен создал мартеновскую печь. После этого было налажено промышленное производство стали и производство стальных пушек. В России первые стальные пушки были изготовлены на златоустовском заводе под руководством П. М. Обухова; затем было организовано производство на заводе Обухова в Петербурге. Наибольших успехов в производстве артиллерийских орудий достиг немецкий промышленник Альфред Крупп, в 60-х годах Крупп наладил массовое производство казнозарядных нарезных орудий. Винтовки Дрейзе и пушки Круппа обеспечили победы Пруссии в войнах с Австрией и Францией – могущественная Германская империя была обязана своим рождением этому новому оружию.

Изобретение ткацкого станка, паровой машины, паровоза, парохода, винтовки и скорострельной стальные пушки – все это были фундаментальные открытия, которые вызвали появление нового культурного круга - того общества, которое называют промышленной цивилизацией. Волна новой культуры исходила из Англии; она быстро охватила европейские государства – прежде всего Францию и Германию. В Европе началась быстрая модернизация по английскому образцу, на первой стадии она включала заимствование техники – станков, паровых машин, железных дорог. Вторая стадия включала политические преобразования – в 1848 году Европу охватила волна революций, знаменем которых являлось свержение монархий и парламентские реформы по английскому образцу. Россия попыталась противиться этой модернизации – началась война с Англией и Францией, и винтовки заставили Россию вступить на путь реформ. В 60-х годах культурная экспансия промышленной цивилизации сменилась военной экспансией – фундаментальное открытие всегда порождает волну завоеваний. Началась эпоха колониальных войн; в конечном счете весь мир оказался поделенным между промышленными державами. Англия, воспользовавшись своим первенством, создала огромную колониальную империю с населением в 390 млн. человек.

Тема 10. Наука в период промышленного переворота.

Изобретатели машин, произведших промышленную революцию, не были учеными, это были мастера-самоучки. Некоторые из них были неграмотны; к примеру, Стефенсон научился читать в 18 лет. В период промышленного переворота наука и техника развивались независимо друг от друга. В особенности это касалось математики, в это время появился векторный анализ, французский математик О. Коши создал теорию функций комплексного переменного, а англичанин У. Гамильтон и немец Г. Грасман создали векторную алгебру. В работах Лапласа, Лежандра и Пуассона была разработана теория вероятностей. Основные достижения физики были связаны с исследованием электричества и магнетизма. На рубеже XVIII-XX веков итальянский физик Вольта создал гальваническую батарею; такого рода батареи долгое время были единственным источником электрического тока и необходимым элементом всех опытов. В 1820 году датский физик Г. Эрстед обнаружил, что электрический ток воздействует на магнитную стрелку, затем француз А. Ампер установил, что вокруг проводника появляется магнитное поле и между двумя проводниками возникают силы притяжения или отталкивания. В 1831 году Майкл Фарадей открыл явление электромагнитной индукции. Это явление состоит в том, что если замкнутый проводник при своем перемещении пересекает магнитные силовые линии, то в нем возбуждается электрический ток. В 1833 году работавший в России немецкий ученый Эмилий Ленц создал общую теорию электромагнитной индукции. В 1841 году Джоуль исследовал эффект выделения теплоты при прохождении электрического тока. В 1865 году выдающийся английский ученый Джеймс Максвелл создал теорию электромагнитного поля.

Теория электромагнетизма стала первой областью, где научные разработки стали непосредственно внедряться в технику. В 1832 году русский подданный барон П. В. Шиллинг продемонстрировал первый образец электрического телеграфа. В приборе Шиллинга импульсы электрического тока вызывали отклонение стрелки, соответствующее определенной букве. В 1837 году американец Морзе создал усовершенствованный телеграф, в котором передаваемые сообщения отмечались на бумажной ленте с помощью специальной азбуки. Однако потребовалось шесть лет прежде чем американское правительство оценило это изобретение и выделило деньги на постройку первой телеграфной линии между Вашингтоном и Балтимором. После этого телеграф стал стремительно развиваться, в 1850 году телеграфный кабель соединил Лондон и Париж, а в 1858 году был проложен кабель через Атлантический океан.

В конце XVIII века родилась новая наука, химия. Прежде алхимики считали что все вещества состоят из четырех элементов огня, воздуха, воды и земли. В 1789 году Антуан Лавуазье экспериментально доказал закон сохранения вещества. Затем Джон Дальтон предложил атомистическую теорию строения вещества; он утверждал, что атомы различных веществ обладают различным весом и что химические соединения образуются сочетанием атомов в определенных численных соотношениях. В 1809 году был открыт закон кратных объемов при химическом взаимодействии газов. Это явление было объяснено Дальтоном и Гей-Люссаком как свидетельство того, что в равных объемах газа содержится одинаковое количество молекул. Позднее Авогадро выдвинул гипотезу, что в определенном объеме (скажем, кубометре) любого газа содержится одинаковое количество молекул; эта гипотеза была экспериментально подтверждена в 40-х годах французским химиком Ш. Жераром. В 1852 году английский химик Э. Фрэнкленд ввел понятие валентности, то есть числового выражения свойств атомов различных элементов вступать в химические соединения друг с другом. В 1869 году Д. И. Менделеев создал периодическую систему элементов.

Химическая промышленность в первой половине XIX века производила в основном серную кислоту, соду и хлор. В 1785 году Клод Бертолле предложил отбеливать ткани хлорной известью. В 1842 году русский химик Николай Зинин синтезировал первый искусственный краситель, анилин. В 50-х годах немецкий химик А. Гофман и его ученик У. Перкин получили два других анилиновых красителя, розанелин и мовеин. В результате этих работ стало возможным создание анилинокрасочной промышленности, получившей быстрое развитие в Германии. Другой важной отраслью химической промышленности было производство взрывчатых веществ. В 1845 году швейцарец Щенбейн изобрел пироксилин, а итальянец Сабреро – нитроглицерин. В 1862 году швед Альфред Нобель наладил промышленное производство нитроглицерина, а затем перешел к производству динамита.

В 1840-х годах немецкий химик Юстус Либих обосновал принципы применения минеральных удобрений в сельском хозяйстве. С этого времени началось производство суперфосфатных и калиевых удобрений, Германия стала центром европейской химической промышленности.

Одним из достижений экспериментальной химии было создание фотографии. В XVIII веке был распространен аттракцион с использованием камеры-обскуры. Это был ящик с небольшим отверстием в которое вставлялось увеличительное стекло; на противоположной стенке можно было видеть изображение находящихся перед камерой предметов. В 1820-х годах французский художник Жозеф Ньепс попытался зафиксировать это изображение. Покрыв слоем горной смолы медную пластинку, он вставлял ее в камеру; потом пластинку подвергали действию различных химикалий, чтобы проявить изображение. Все дело было в подборе фотонесущего слоя, проявителя и закрепителя. Потребовались долгие годы экспериментов, которые после смерти Ньепса продолжал его помощник Луи Дагер. К 1839 году Дагеру удалось получить изображение на пластинках, покрытых иодистым серебром после проявления их парами ртути; таким образом появилась дагерротипия. Французское правительство оценило это изобретение и назначило Дагеру пожизненную пенсию в 6 тысяч франков.

Тема 11. Технические достижения конца XIX – начала XX века.

В конце XIX столетия наступила «Эпоха электричества». Если первые машины создавались мастерами-самоучками, то теперь наука властно вмешалась в жизнь людей – внедрение электродвигателей было следствием достижений науки. «Эпоха электричества» началась с изобретения динамомашины; генератора постоянного тока, его создал бельгийский инженер Зиновий Грамм в 1870 году. Вследствие принципа обратимости машина Грамма могла работать как в качестве генератора, так и в качестве двигателя; она могла быть легко переделана в генератор переменного тока. В 1880-х годах работавший в Америке на фирме «Вестингауз электрик» югослав Никола Тесла создал двухфазный электродвигатель переменного тока. Одновременно работавший в Германии на фирме АЭГ русский электротехник Михаил Доливо-Добровольский создал эффективный трехфазный электродвигатель. Теперь задача использования электроэнергии упиралась в проблему передачи тока на расстояние. В 1891 году состоялось открытие Всемирной выставки во Франкфурте. По заказу организаторов этой выставки Доливо-Добровольский создал первую ЛЭП высокого напряжения и трансформатор к ней; заказ предусматривал столь сжатые сроки, что не проводилось никаких испытаний; система была включена - и сразу заработала. После этой выставки Доливо-Добровольский стал ведущим электротехником того времени, а фирма АЭГ стала крупнейшим производителем электротехники. С этого времени заводы и фабрики стали переходить от паровых машин к электродвигателям, появились крупные электростанции и линии электропередач.

Большим достижением электротехники было создание электрических ламп. За решение этой задачи в 1879 году взялся американский изобретатель Томас Эдисон; его сотрудники проделали свыше 6 тысяч опытов, опробуя для нити накаливания различные материалы, лучшим материалом оказались волокна бамбука, и первые лампочки Эдисона были «бамбуковыми». Лишь спустя двадцать лет по предложению русского инженера Лодыгина нить накаливания стали изготовлять из вольфрама.

Электростанции требовали двигателей очень большой мощности; эта проблема была решена созданием паровых турбин. В 1889 году швед Густав Лаваль получил патент на турбину, в которой скорость истекания пара достигала 770 м/сек. Одновременно англичанин Чарлз Парсонс создал многоступенчатую турбину; турбина Парсонса стала использоваться не только на электростанциях, но и как двигатель быстроходных судов, крейсеров и океанских лайнеров. Появились также гидроэлектростанции, на которых использовались гидротурбины, созданные в 30-х годах французским инженером Бенуа Фурнероном. Американец Пелтон в 1884 году запатентовал струйную турбину, работавшую под большим давлением. Гидротурбины имели очень высокий к.п.д., порядка 80%, и получаемая на гидростанциях энергия была очень дешевой.

Одновременно с работами по созданию сверхмощных двигателей шла работа над малыми передвижными двигателями. Поначалу это были газовые двигатели, работавшие на светильном газе; они предназначались для мелких предприятий и ремесленных мастерских. Газовый двигатель был двигателем внутреннего сгорания, то есть сгорание топлива осуществлялось непосредственно в цилиндре и продукты сгорания толкали поршень. Работа при высоких температурах в цилиндре требовала системы охлаждения и смазки; эти проблемы были решены бельгийским инженером Этьеном Ленуаром, который и создал в 1860 году первый газовый двигатель.

Однако получаемый из древесных опилок светильный газ был дорогим топливом, более перспективными были работы над двигателем, работавшими на бензине. Бензиновый двигатель потребовал создания карбюратора, устройства для распыления топлива в цилиндре. Первый работоспособный бензиновый двигатель был создан в 1883 году немецким инженером Юлиусом Даймлером. Этот двигатель открыл эру автомобилей; уже в 1886 году Даймлер поставил свой двигатель на четырехколесный экипаж. Эта машина была продемонстрирована на выставке в Париже, где лицензию на ее производство купили французские фабриканты Рене Панар и Этьен Левассор. Панар и Левассор использовали только двигатель Даймлера; они создали свой автомобиль, оснастив его системой сцепления, коробкой передач и резиновыми шинами. Это был первый настоящий автомобиль; в 1894 году он выиграл первые автомобильные гонки Париж-Руан. В следующем году Левассор на своем автомобиле выиграл гонку Париж-Бордо. «Это было безумие! – сказал победитель. - Я мчался со скоростью 30 километров в час!» Однако Даймлер сам решил заняться производством автомобилей; в 1890 году он создал компанию «Даймлер моторен», и десять лет спустя эта компания выпустила первый автомобиль марки «Мерседес». «Мерседес» стал классическим автомобилем начала XX века; он имел четырехцилиндровый двигатель мощностью 35 л. с. и развивал скорость 70 км/час. Эта красивая и надежная машина имела невероятный успех, она положила начало массовому производству автомобилей.

К. п. д. двигателя Даймлера составлял около 20%, к. п. д. паровых машин не превосходил 13%. Между тем согласно теории тепловых двигателей, разработанной французским физиком Карно, к. п. д. идеального двигателя мог достигать 80%. Идея идеального двигателя волновала умы многих изобретателей, в начале 90-х годов ее попытался воплотить в жизнь молодой немецкий инженер Рудольф Дизель. Идея Дизеля состояла в сжатии воздуха в цилиндре до давления порядка 90 атмосфер, при этом температура достигала 900 градусов; затем в цилиндр впрыскивалось топливо; в этом случае цикл работы двигателя получался близким к идеальному «циклу Карно». Дизелю не удалось полностью реализовать свою идею, из-за технических трудностей он был вынужден понизить давление в цилиндре до 35 атмосфер. Тем не менее, первый двигатель Дизеля, появившийся в 1895 году, произвел сенсацию – его к. п. д. составлял 36%, вдвое больше, чем у бензиновых двигателей. Многие фирмы стремились купить лицензию на производство двигателей, и уже в 1898 году Дизель стал миллионером. Однако производство двигателей требовало высокой технологической культуры, и Дизелю многие годы пришлось ездить по разным странам, налаживая производство своих двигателей.

 <<<     ΛΛΛ     >>>   

Так китайцы открыли для себя внешний мир
Производство тканей увеличилось в десятки раз
Создание мусея совпало по времени с новым переворотом в военном деле

сайт копирайтеров Евгений