Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Радиоактивное золото -- более ценное, чем природное

Обсуждая возможность искусственного получения золота из ртути, мы
видели, что обратное превращение золота в ртуть не так уж невозможно. По
существу, только благодаря капризу природы золото существует как природный
элемент. Причина того, что золото естественным путем не превращается в
ртуть, заключается в несколько большей устойчивости ядра [197]Au
по сравнению с [197]Hg -- всего на 1 МэВ. Если бы, наоборот,
[197]Hg обладала бы большей устойчивостью, то вообще не
существовало бы природного золота. Слитки из искусственного золота
превращались бы в лужу ртути.
Весть о том, что золото пытались в научных целях превратить в другой
элемент, например в ртуть, наверняка привела бы в недоумение тайных
приверженцев алхимии. Каковы причины такой "алхимии навыворот"?
Одно время в измерительной технике особое значение приобрел изотоп
ртути с массовым числом 198. Этот изотоп требовался в очень чистом виде.
Выделить его из природной ртути либо не удавалось, либо нельзя было из-за
огромных затрат. Оставался лишь один путь. Нужно было получить ртуть-198
искусственно, а для этого требовалось золото. Почему же для науки свет
клином сошелся на этой ртути?
Метр -- это одна сорокамиллионная часть окружности Земли по экватору.
Так раньше учили в школе. С 1889 года в Париже хранится эталон метра --
стержень из сплава платины с иридием. Однако этот эталон является
искусственной мерой, которая может изменяться. В поисках постоянного,
естественного стандарта длины вскоре нашли другую единицу: один метр
соответствует 1553164,1 длинам волн красной спектральной линии кадмия,
равных 6438 А (1 А = 10[-10] м). При помощи такого стандарта
достигли довольно высокой точности, достаточной для многих целей. Во время
второй мировой войны британские конструкторы приборов для воздушной и
морской навигации в целях секретности использовали лишь величины на основе
красной линии кадмия.
Однако новая мера длины все же не соответствовала самым высоким
требованиям. Кадмий -- смешанный элемент, и каждый из его изотопов дает
красную спектральную линию, длина волны которой чуть-чуть отличается от
других. Поэтому еще в 1940 году американские физики Вайнс и Альварес
предложили производить отнесение к зеленой линии спектра ртути-198 с длиной
волны 5461 А. Эта линия резко ограничена и абсолютно монохроматична. Вайнс и
Альварес бомбардировкой золота нейтронами в циклотроне в течение месяца
получили ртуть-198 в количествах, необходимых для спектрального анализа.
Образовавшийся изотоп ртути они отделяли накаливанием. Его пары
конденсировали в крошечных капиллярах.
После второй мировой войны в США в продажу поступили первые ртутные
лампы Mercury-198 Lamps. Они содержали 1 мг ртути-198, которая была получена
из золота в атомном реакторе. Другие государства вскоре также стали
выпускать требуемый изотоп ртути. С 1966 года его получают в ГДР, в
Центральном институте ядерных исследований в Россендорфе. В тамошнем атомном
реакторе химики получили около 100 мг ртути-198 с изотопной чистотой 99 % из
95 г чистого золота в результате его 1000-часовой бомбардировки нейтронами:
[197]Au + n = [198]Au* + (
[198]Au* = [198]Hg + e[-]
На основе такого нового стандарта длины метр был вновь "перемерен". Он
составляет 1831249,21 длин волн зеленой линии изотопа 198Hg. В настоящее
время ртуть-198 опять-таки вытеснена изотопом благородного газа криптона --
[86]Kr, оранжевая линия которого длиной 6058 А более
воспроизводима. Один метр соответствует 1650763,73 длинам волн излучения
атомов криптона-86 в вакууме.
Промежуточный продукт синтеза ртути-198--радиоактивное золото-198--
также нашел применение. Этот изотоп излучает бета-лучи и распадается с
периодом полураспада 65 ч до устойчивого изотопа [198]Hg. В
настоящее время его используют как лекарственный препарат -- в
мелкодисперсном состоянии в виде золотого золя. Оно применяется для
получения радиограмм органов человеческого тела и для лечения раковых
опухолей. Для этой цели его впрыскивают в соответствующие ткани. Каждый атом
золота действует как маленькая рентгеновская трубка и убивает раковые клетки
в строго ограниченной области. Такая терапия гораздо целесообразнее, чем
облучение больших поверхностей. Радиоактивное золото значительно менее
вредно, чем рентгеновские лучи. Весьма наглядны также случаи исцеления при
обработке лейкозов, болезненном увеличении числа белых кровяных шариков. В
борьбе с бичом рака искусственное радиоактивное золото уже оказало
человечеству неоценимые услуги.
Современная наука вне всякого сомнения скажет: превращение элементов --
да, превращение в золото -- нет! Для чего? Сегодня золото растрачивают, не
задумываясь, для синтеза других элементов, представляющих интерес для науки.
Золото используют, чтобы искусственно получить изотопы франция и астата --
элементов, которые, как известно, нельзя получить из природных источников.
Здесь также алхимию ставят с ног на голову. Франций получают из золота,
которое в современных ускорителях бомбардируют ионами кислорода или неона:
[197]Au + [22]Ne = [212]Fr +
[4]Не + 3n
Астат образуется путем превращения золота при обстреле последнего
разогнанными ядрами углерода:
[197]Au + [12]С = [205]At + 4n
Вот, каким "дорогим" стало золото для современной науки: она не
стремится получить его искусственно, а, скорее, использует как "сырье" для
синтеза других элементов.

Глава 7
ИССЛЕДОВАНИЯ И ОТВЕТСТВЕННОСТЬ - СЕГОДНЯ И В БУДУЩЕМ

Политика бомбы

Получение атомной энергии и производство искусственных элементов в
атомном реакторе представляют лишь одну сторону новой эпохи
научно-технического прогресса. Ибо, к сожалению, "атомный век" начался не с
создания атомных электростанций, то есть с мирного использования ядерной
энергии, которая служит лишь благу человечества.
6 августа 1945 года. Ранним утром этого дня один-единственный самолет
пролетел на большой высоте над Хиросимой. Во второй мировой войне этот
крупный японский город избежал американских бомбежек. В то утро, в самом
начале девятого часа, американский бомбардировщик типа В-29 сбросил свой
смертоносный груз. Всего одна бомба на парашюте медленно и незаметно
приближалась к центру города. Она взорвалась на высоте около 500 м. Начался
кромешный ад. Вслед за молнией взрыва, которая на километры осветила ярким
светом пространство вокруг, появился огненный шар гигантских размеров.
Огромное грибовидное облако заклокотало, поднимаясь вверх более чем на 15
км. Это адское зрелище сопровождалось длительным, ужасающим, неслыханным
дотоле громыханием.
Одна-единственная атомная бомба из урана-235 уничтожила целый японский
город. Сила ее взрыва в пересчете составила почти 20000 т тринитротолуола,
что соответствовало 2000 тех больших десятитонных бомб, которые во вторую
мировую войну превращали в золу и щепки целые жилые кварталы.
Те, кого пощадили огонь и взрывная волна, стали жертвами радиоактивного
излучения, которое создало новый вид гибели: лучевую смерть. Жители
Хиросимы, пережившие первые моменты адского ужаса, после длительных мучений
погибали от коварной лучевой болезни. В 1945 году из числа населения
Хиросимы погибло 141 000 человек, в 1946 году к ним добавилось еще 10 000. С
тех пор атомная смерть находит год за годом все новые жертвы среди японцев.
Потомки тех несчастных, которые 6 августа 1945 года подверглись действию
смертоносных лучей первой атомной бомбы, страдали, страдают и сейчас
телесными уродствами. Опасаться следует также лучевых повреждений
генетического аппарата.
9 августа 1945 года еще одна американская атомная бомба опустошила
город Нагасаки. В этой бомбе в качестве взрывчатого вещества использовался
искусственный элемент плутоний, который оправдал свое наименование, явившись
посланцем царства смерти. Сбрасывание обеих атомных бомб военными США
явилось преступным экспериментом по отношению к беззащитному гражданскому
населению. К тому времени уже не было никакой военной необходимости в
применении такого оружия.
После поражения фашизма и окончания второй мировой войны мир не стал
более миролюбивым. Холодная война, эта вызывающая игра сил Соединенных
Штатов по отношению к Советскому Союзу и развивающемуся социалистическому
лагерю, стала принимать опасные формы эскалации. Во всех политических
стычках США брали на себя роль мирового жандарма и выставляли "пугало"
атомной бомбы. У Советского Союза оставался один ответ на эту дерзкую
политику силы: как можно скорее положить конец американской монополии на
атомную бомбу.
25 декабря 1946 года в Европе была пущена первая "урановая машина". И.
В. Курчатову и его сотрудникам удалось запустить первый советский атомный
реактор. Через два с половиной года Советский Союз испытал первую атомную
бомбу. Реакционные круги США сразу же начали разжигать настоящую атомную
истерию. Однако такое провокационное поведение далеко не всегда встречало
одобрение в капиталистическом мире. Когда Отто Хан узнал об успешном
советском опытном взрыве, он сразу же отметил: "Это -- хорошая весть; если
Советская Россия будет тоже иметь атомную бомбу, тогда не будет войны".
Предложения Советского Союза о немедленном запрещении атомной бомбы
игнорировались США. В январе 1950 года президент США Трумэн открыто заявил:
"Я дам указания продолжать развертывание атомного оружия, в том числе так
называемой водородной бомбы, или "сверхбомбы". Сообщение Трумэна явилось
сигналом к весьма опасной гонке атомного вооружения. Ведь американский
президент санкционировал создание термоядерной бомбы.
То, что непрерывно протекает на Солнце и поддерживает его существование
-- превращение водорода и его изотопов в гелий с выделением энергии,
совершается в водородной бомбе молниеносно и с величайшей разрушительной
силой. Однако для запуска такого процесса требуются температуры от 50 до 100
миллионов градусов, которых на Земле можно достичь кратковременно лишь с
помощью атомной бомбы в качестве "спички".
В 1954 году в американском научном журнале "Физикл ревью" появилось
несколько публикаций творческой группы Сиборга и Гиорсо о вновь открытых
элементах с порядковыми номерами 99 и 100. Эти сообщения содержали неясные
формулировки, в которых умалчивалась определенная информация. В истории
научных публикаций такой случай был необычным. Основания для утаивания стали
известны лишь в 1955 году, когда была приоткрыта завеса над происхождением
этих элементов.
До 1 ноября 1952 года в Тихом океане находился идиллический островок,
называемый Элугелаб. Он относился к атоллу Эниветок из группы Маршальских
островов. В тот день остров Элугелаб прекратил свое существование. Он
взлетел на воздух в результате первого американского термоядерного испытания
под кодовым названием "Майк". Сила взрыва составила 3 Мт, то есть три
миллиона тонн тринитротолуола. Это соответствует общей взрывной силе всех
бомб, сброшенных во вторую мировую войну, и примерно в 200 раз превышает
взрывное действие хиросимской бомбы! Ударная волна взрыва была
зарегистрирована сейсмическими станциями всего мира; это было первое
землетрясение, спровоцированное человеком. Там, где находился остров
Элугелаб, на дне Тихого океана зиял кратер диаметром 1,5 км и глубиной 150
м.
Беспилотные самолеты пролетали сквозь взрывное облако и собирали
радиоактивную пыль для научных исследований. Позднее были переработаны
центнеры коралловой породы с окружающих островов. В этих остатках
термоядерного взрыва в декабре 1952 года американские ученые нашли 99-й
элемент, а спустя некоторое время, в марте следующего года -- 100-й элемент,
теперь именуемые эйнштейнием и фермием. Нейтронная молния "Майк'а" --
нейтронную дозу оценивают в 10[22] нейтронов/см[2]
-произвела превращение элементов нового рода. При этом из урана поджигающей
бомбы образовались изотопы урана с необычайно большим содержанием нейтронов,
которые, многократно претерпев бета-распад, превратились в конце концов в
изотопы элементов 99 и 100. Если бы этот процесс захотели провести в
исследовательском реакторе с интенсивностью потока в 10[13]
нейтронов/см[2] то потребовалось бы 30 лет, чтобы достичь
требуемой дозы нейтронов. "Майк" совершил это в миллионную долю секунды.
Странно и почти безответственно звучит "благодарность" ученых,
открывших эти элементы, которую они выразили научной лаборатории в
Лос-Аламосе -- фабрике атомных бомб США.
В августе 1953 года была взорвана первая советская водородная бомба.
Военные и политики США испытали немалый страх, когда их специалисты
доложили, что Советский Союз уже располагает "сухой" транспортабельной
водородной бомбой с зажигательным веществом -- дейтеридом лития. Бомба США,
взорванная в ноябре 1952 года, была, напротив, нетранспортабельным чудовищем
в 65 т, непригодным для военного использования.
На это США ответили секретным "сверхоружием" и в марте 1954 года
подожгли первую так называемую трехступенчатую бомбу (Fission-Fusion-Fission
Bomb[70]). Поджигателем для собственно водородной бомбы служило
обычное атомное взрывчатое вещество. То и другое было окружено оболочкой из
урана-238, который также становится делимым под действием быстрых нейтронов
взорвавшейся Н-бомбы. Многоступенчатые бомбы обладают неслыханной
разрушительной силой, которая может достигать 50 Мт и более. С таким
сверхоружием можно одним ударом опустошить целые страны и континенты.
Ужасающее действие водородной бомбы не ограничивается ее взрывной
силой, превышающей силу атомной бомбы в тысячу раз. Она вызывает излучения,
интенсивность которых не знает себе равных на Земле и является смертельной
для всех живых существ в радиусе действия бомбы. Когда же активность
несколько снижается, остаются достаточно опасные продукты деления, которые
попадают на поверхность Земли вместе с радиоактивными осадками и заражают
большие пространства. Особенно опасны долгоживущие радиоактивные изотопы,
такие, как углерод-14, проникающий в биосферу, цезий-137 и более всего
стронций-90. Радиоактивный стронций проникает с пищей в организм,
накапливается в костях и неизбежно вызывает рак. Еще страшнее генетические
дефекты, вызываемые радиоактивным излучением, которые приводят к изменению
наследственного аппарата и повреждению потомства.
Лауреат Нобелевской премии по химии и лауреат Международной Ленинской
премии, американский ученый Лайнус Полинг[71], который всем своим
авторитетом борется за запрещение атомного оружия, весьма наглядно
представил опасность радиоактивных осадков: одна чайная ложка стронция-90,
если ее разделить поровну между всеми людьми, вызовет их гибель в течение
немногих лет. Полинг рассчитал, что одна сверхбомба при своем взрыве
выбрасывает в атмосферу нашей планеты в тысячу раз большее количество
стронция-90.
Вынужденный считаться с военным давлением Советский Союз не потерял из
виду главной цели: мирное использование атомной энергии, служащее для блага
человека. Первая атомная электростанция, пущенная в июле 1954 года, и первый
атомный корабль -- советский ледокол "Ленин" -- красноречиво говорят об
этом.
Борьбу с опасной игрой империалистов США атомным оружием как средством
политического давления и нажима, против безответственного испытания Н-бомбы,
которое угрожает дальнейшему существованию человечества, вели и ведут не
только Советский Союз и страны социалистического лагеря, но и представители
капиталистического мира, такие, как Фредерик Жолио-Кюри, Лайнус Полинг,
Альберт Швейцер, Отто Хан. Особенно убедительным было в 1957 поду воззвание
18-ти западногерманских атомщиков во главе с Ханом, Вейцзекером и
Гейзенбергом, которые протестовали против военного использования атомной
энергии, против опасности атомной войны и снаряжения ФРГ атомным оружием.
Ежегодные Пагуошские конференции также стали важным событием. Именитые
ученые встречаются здесь, чтобы обсудить вопросы разоружения и борьбы с
злоупотреблениями атомной энергией.
Сегодня, благодаря обязательствам, взятым на себя Советским Союзом и
другими социалистическими государствами, имеются соглашения по запрещению
испытаний ядерного оружия в атмосфере, в космическом пространстве и под
водой, а также договоренности по вопросам нераспространения атомного оружия.
Это, к сожалению, еще не значит, что опасность атомной войны устранена.
Овладение превращением элементов используется во вред военно-промышленным
комплексом США -- для изобретения еще более страшных видов оружия. Последним
порождением этого безумия вооружения является нейтронная бомба США,
разработанная в качестве нового атомного средства массового уничтожения. В
процессе превращения водорода и его атомов в гелий изобретателям этого
"малокалиберного" ядерного оружия удалось обратить 80 % энергии взрыва в
сверхбыстрые нейтроны, которые уничтожают все живое, а материальные ценности
оставляют практически неповрежденными.
Мощные демонстрации протеста объединяют миролюбивое человечество в
борьбе против" нейтронной бомбы и ее использования в войсках НАТО.

Успехи исследований в Дубне и Беркли

Открытие последних трех актиноидов--элементов 101, 102 и 103 удалось
совершить с 1955 по 1961 годы. Чтобы осуществить синтез 101-го элемента из
эйнштейния, в США в 1955 году было использовано все имеющееся количество
99-го элемента: 10[9] атомов -- Около 10[-13] г! Это
количество было получено обстрелом плутония нейтронами в специально
изготовленном испытательном реакторе. После бомбардировки мишени из
эйнштейния ядрами гелия в 60-дюймовом циклотроне в Беркли смогли уловить
буквально 17 атомов нового 101-го элемента -- менделевия. Трудность
постановки эксперимента с несколькими атомами невообразимо велика. Однако их
удалось обнаружить. Это было продемонстрировано всем окружающим весьма
впечатляюще: каждый раз, когда был "пойман" атом менделевия, в лаборатории
Калифорнийского университета в Беркли раздавался пожарный сигнал.
Американские ученые позволили себе такую шутку: счетчик они присоединили к
пожарной сирене. Это продолжалось до тех пор, пока не вмешалась пожарная
служба и запретила "хулиганство".
Менделевий является последним из элементов, полученных в циклотроне.
Для синтеза следующих элементов просто-напросто нет достаточного исходного
материала. Все большие трудности создавало для ученых одно неприятное
свойство трансуранов: их самопроизвольное деление и все уменьшающийся период
полураспада. За то время, которое требовалось для получения в реакторе
исходного элемента в весомых количествах, он успевал в значительной мере
исчезнуть в результате начавшегося распада. Прекрасным примером может
служить фермий-257-- наиболее тяжелый известный изотоп, который удалось
получить. Период полураспада фермия-257 составляет 97 дней, что позволило
считать его подходящим исходным веществом для получения трансфермиевых
элементов. Однако при облучении в мощном реакторе из фермия-257 образуется
только короткоживущий фермий-258, который самопроизвольно делится за
считанные микросекунды. После этого малорадостного открытия надежда
ступенчатого получения последующих трансуранов путем захвата нейтронов
быстро исчезла. Исследователи дошли до такой точки, когда для синтеза
следующих трансуранов требовалось попросту придумать что-то новое.
Имелся лишь один выход. Нужно было использовать те трансураны, которые
можно было добыть в больших количествах, прежде всего -- это плутоний.
Надеялись также получить в достаточных количествах кюрий и калифорний после
многолетнего облучения в реакторе. Конечно, используя трансураны с меньшим
зарядом ядра, необходимо было испытать более тяжелые снаряды. Нейтроны и
альфа-частицы являлись уже недостаточно мощными. Подходящими по массе
снарядами были ядра кислорода, азота, углерода, бора и неона, полученные с
помощью новых ионных источников. Безусловно, ускорить тяжелые частицы до
необходимой энергии возможно только с помощью высокоэффективных ускорителей.
Начиная с середины 50-х годов американские физики все свои надежды возлагали
на новый линейный ускоритель тяжелых ионов HILAC, а в последнее время -- на
еще более мощный Super-HILAC. Их советские коллеги использовали оправдавшие
себя ускорители частиц У-200 и У-300. В испытании находится новый циклотрон
У-400, который способен ускорить до больших энергий даже ядра урана.
Также с середины 50-х годов длится спор между американскими и
советскими физиками по поводу того, кто же первым синтезировал и точно
идентифицировал элементы с 102 по 105. До сего времени нет единства в
вопросе приоритета и названии новых элементов: 102-- жолиотий (по советскому
представлению) или нобелий (по американским предложениям): 103 --
резерфордий или лоуренсий: 104 -- курчатовий или резерфордий: 105 --
нильсборий и ханий?
Причина таких разногласий заключается, несомненно, в том, что
американская группа ученых не могла больше претендовать на приоритет. Со
времени основания Объединенного института ядерных исследований (ОИЯИ) в
Дубне, в 1956 году, решающие импульсы в исследовании трансуранов исходили от
советских ученых. С тех пор прогресс в этой специальной отрасли определяли
советские исследователи под руководством физика Г. Н. Флерова и его коллеги
Ю. Ц. Оганесяна. ОИЯИ в Дубне стал одновременно символом социалистической
научной интеграции. В этом институте работают исследователи из всех
социалистических стран; они все более широко участвуют в существенных
открытиях в ядерной физике.
Все началось со 102-го элемента. В Стокгольме в 1957 году подобрался
коллектив из американских, английских и шведских физиков. Эта группа
считала, что получила изотопы элемента 102, названного ими нобелием, в
результате бомбардировки кюрия ядрами углерода. Несколько позже Флеров
объявил об удачном синтезе 102-го элемента, осуществленном на циклотроне
Института атомной энергии в Москве, путем обстрела плутония-241 ядрами
кислорода. Исследователи из Беркли не отставали и также сообщили об успешной
идентификации 102-го элемента. Однако все приведенные данные и факты
противоречили друг другу. Поэтому американцы стали называть новый элемент не
нобелием, a no believium, что в вольном переводе означает "не верю". Физики
в Дубне в течение ряда лет систематически дорабатывали эти результаты с тем,
чтобы разъяснить противоречия. Только в 1963 году им удалось получить
однозначные доказательства. Флеров и его сотрудники смогли безупречно
синтезировать 102-й элемент из урана и ионов неона:
[238]U + [22]Ne = [256]Х + 4n
Физикам пришлось выдумывать изощренные методы разделения, измерения и
идентификации для того, чтобы вообще обнаружить новый элемент. Ведь он
довольно быстро прощается с этим миром, обладая периодом полураспада всего
лишь 8 с.
Когда ученые из Беркли смогли располагать 3 мкг калифорния, конечно, в
виде смеси различных изотопов, они решились на синтез следующего элемента --
103-го. Эти 3 мкг калифорния в течение трех лет бомбардировали в линейном
ускорителе ядрами атома бора. Было мало надежды на благоприятный результат.
Из 100 миллиардов ядер бора только одно могло проникнуть в ядро калифорния,
однако ядро нового атома в 99 % случаев должно было снова распасться в
результате самопроизвольного деления. Американцы рассчитали, что из 100 000
слияний только одно должно было образовать ядро с 103 протонами -- искомый
элемент 103.
В 1961 году группа из Беркли сочла, наконец, что идентифицировала
несколько атомов одного из изотопов 103-го элемента. Через несколько лет в
Дубне советские исследователи, синтезировали из америция-243 и ионов
кислорода другой изотоп. Они сразу же исправили прежние данные своих
американских коллег. Кто же прав? Одна проблема, по крайней мере, еще до сих
пор не разрешена: как называть 103-й элемент? Лоуренсий или резерфордий?
С особенным нетерпением ожидалось открытие 104-го элемента -- первого
представителя трансактиноидов. Согласно актиноидной теории, элемент 104,
будучи экагафнием, должен был бы обладать свойствами, сходными с гафнием или
цирконием. В 1964 году коллективу ОИЯИ в Дубне под руководством Флерова
удался большой бросок. После бомбардировки плутония-242 ионами неона впервые
были обнаружены атомы 104-го элемента -- курчатовия:
[244]Pu + [22]Ne = [260]X + 4n
До сих пор новый способ его физико-химической идентификации считается
мастерским, ибо образовавшийся изотоп самопроизвольно распадается с периодом
полураспада всего лишь 0,1 с. Поэтому требовались необыкновенно быстрые
действия для того, чтобы химически доказать, что 104-й элемент следует
отнести к группе четырехвалентных элементов, вместе с гафнием и цирконием. В
Дубне это удалось подтвердить с помощью остроумной экспериментальной
техники. Для этой цели использовалась летучесть галогенидов при повышенных
температурах: синтезированные атомы 104-го элемента, отброшенные из мишени в
результате радиоактивного выброса, подвергали хлорированию при 350 °С.
Пропускаемый газообразный хлор смешивали с парами трихлорида кюрия,
тетрахлорида циркония и пентахлорида ниобия. Далее эти хлориды оседали на
различных участках термохроматографической колонки, в зависимости от того,
был ли это три-, тетра- или пента-хлорид. Хлорид 104-го элемента
сконденсировался на том же месте, что и тетрахлорид циркония.
Американцы, которые тоже были близки к открытию 104-го элемента,
получили его в виде изотопа, излучающего альфа-частицы, при бомбардировке
калифорния-249 ядрами углерода. Образующийся из него в результате изотоп
102-го элемента можно было безупречно идентифицировать на основании его
характеристического рентгеновского излучения. Закон Мозли подтвердился еще в
одном случае. 105-й элемент получен группой Флерова уже в 1967 году в
результате ядерной реакции америция с ионами неона. Но по уравнению
[243]Am + [22]Ne = [260]Х + 4 (5)n
образовывался лишь один атом за час. Такого скудного выхода было
недостаточно, чтобы окончательно подтвердить открытие. Только в начале 1970
года из Дубны пришло известие о точной идентификации элемента 105. В том же
году добились успеха Гиорсо с сотрудниками. В Беркли они синтезировали
изотоп 105-го элемента путем бомбардировки 60 мкг калифорния ядрами азота:
[249]Cf + [15]N = [260]Х + 4n
Элемент 105, будучи аналогом тантала, должен быть пятивалентным. Это
удалось безупречно доказать дубнинским исследователям с помощью техники
хлорирования, уже испытанной на 104-м элементе.

Сверхтяжелые элементы на островке устойчивости

Теоретическое и экспериментальное изучение устойчивости ядра дало
советским физикам повод для пересмотра применявшихся до сих пор методов
получения тяжелых трансуранов. В Дубне решили пойти новыми путями и взять в
качестве мишени свинец и висмут.
Ядро, как и атом в целом, имеет оболочечное строение. Особой
устойчивостью отличаются атомные ядра, содержащие 2--8--20--
28--50--82--114--126--164 протонов (то есть ядра атомов с таким порядковым
номером) и 2--8--20--28--50--82--126--184--196-- 228--272--318 нейтронов,
вследствие законченного строения их оболочек. Только недавно удалось
подтвердить эти воззрения расчетами с помощью ЭВМ. Такая необычная
устойчивость бросилась в глаза, прежде всего, при изучении
распространенности некоторых элементов в космосе. Изотопы, обладающие этими
ядерными числами, называют магическими. Изотоп висмута [209]Bi,
имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся
также изотопы кислорода, кальция, олова. Дважды магическими являются: для
гелия -- изотоп [4]Не (2 протона, 2 нейтрона), для кальция --
[48]Са (20 протонов, 28 нейтронов), для свинца --
[208]Pb (82 протона, 126 нейтронов). Они отличаются совершенно
особой прочностью ядра.
Используя источники ионов нового типа и более мощные ускорители тяжелых
ионов -- в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флерова и
Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной
энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами
хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться?
В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке
50 случаев, указывающих на образование 106-го элемента, который, однако,
распадается уже через 10[-2] с. Эти 50 атомных ядер образовались
по схеме:
[208]Pb + [51]Cr = [259]X
Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли
сообщили, что они синтезировали изотоп нового, 106-го, элемента с массовым
числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате
Super-HILAC.
Какое имя будет носить новый элемент? Откинув прежние разногласия, обе
группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на
этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А
Гиорсо дополнил, что решено воздержаться от всяких предложений о
наименовании 106-го элемента вплоть до прояснения ситуации.
К концу 1976 года дубнинская лаборатория ядерных реакций закончила
серию опытов по синтезу 107-го элемента; в качестве исходного вещества
дубнинским "алхимикам" послужил "магический" висмут-209. При обстреле ионами
хрома с энергией 290 МэВ он превращался в изотоп 107-го элемента:
[209]Bi + [54]Cr = [261]X + 2n
107-й элемент самопроизвольно распадается с периодом полураспада 0,002
с и, кроме того, излучает альфа-частицы.
Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002
с заставили насторожиться. Ведь они оказались на несколько порядков больше,
чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно
влияла близость последующего магического числа протонов и нейтронов -- 114,
повышающая устойчивость? Если это так, то была надежда получить и
долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами
неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый
нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с.
Это позволило бы изучить химические свойства 107-го элемента -- экарения.
Самый долгоживущий изотоп первого трансурана, элемента 93 --
нептуний-237,-- обладает периодом полураспада 2 100 000 лет; самый
устойчивый изотоп 100-го элемента -- фермий-257-- только 97 дней. Начиная с
104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому,
казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для
чего же нужны дальнейшие исследования? Альберт Гиорсо, ведущий специалист
США по трансуранам, высказался однажды в этой связи: "Причиной для
продолжения поисков дальнейших элементов является просто-напросто
удовлетворение человеческого любопытства -- а что же происходит за следующим
поворотом улицы?" Однако это, конечно, не просто научное любопытство. Гиорсо
давал все же понять, как важно продолжение такого фундаментального
исследования.
В 60-е годы теория магических ядерных чисел приобретала все большее
значение. В "море неустойчивости" ученые отчаянно пытались найти
спасительный "островок относительной устойчивости", на который могла бы
твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще
не открыт, "координаты" его известны: элемент 114, экасвинец, считается
центром большой области устойчивости. Изотоп-298 элемента 114 уже давно
является особым предметом научных споров, ибо, имея 114 протонов и 184
нейтрона, он представляет собой одно из тех дважды магических атомных ядер,
которым предсказывают длительное существование, Однако, что же означает
длительное существование? Предварительные расчеты показывают: период
полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по
отношению к самопроизвольному делению -- от 108 до 10[16] лет.
Такие колебания, как указывают физики, объясняются приближенностью
"компьютерной химии".
Весьма обнадеживающие значения периодов полураспада предсказывают для
следующего островка устойчивости -- элемента 164, двисвинца. Изотоп 164-го
элемента с массовым числом 482 -- также дважды магический: его ядро образуют
164 протона и 318 нейтронов.
Науку интересуют и просто магические сверхтяжелые элементы, как,
например, изотоп-294 элемента 1 10 или изотоп-310 элемента 126, содержащие
по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют
этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются
все новые данные и сейчас уже определенно известно, какими свойствами --
ядерными, кристаллографическими и химическими -- должны обладать эти
сверхтяжелые элементы. В специальной литературе накапливаются точные данные
для элементов, которые люди, быть может, откроют лет через 50.
В настоящее время атомщики путешествуют по морю неустойчивости в
ожидании открытий. За их спинами осталась твердая земля: полуостров с
естественными радиоактивными элементами, отмеченный возвышенностями тория и
урана, и далеко простирающаяся твердая земля со всеми прочими элементами и
вершинами свинца, олова и кальция. Отважные мореплаватели уже давно
находятся в открытом море. На неожиданном месте они нашли отмель: открытые
106 и 107-й элементы устойчивее, чем ожидалось.
В последние годы мы долго плыли по морю неустойчивости, рассуждает Г.
Н. Флеров, и вдруг, в последний момент, почувствовали землю под ногами.
Случайная подводная скала? Либо песчаная отмель долгожданного островка
устойчивости? Если правильно второе, то у нас есть реальная возможность
создать новую периодическую систему из устойчивых сверхтяжелых элементов,
обладающих поразительными свойствами.
После того, как стала известна гипотеза об устойчивых элементах вблизи
порядковых номеров 114, 126, 164, исследователи всего мира набросились на
эти "сверхтяжелые" атомы. Некоторые из них, с предположительно большими
периодами полураспада, надеялись обнаружить на Земле или в Космосе, по
крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы
эти элементы так же существовали, как и все прочие.
Следы сверхтяжелых элементов -- что следует под этим понимать? В
результате своей способности самопроизвольно делиться на два ядерных осколка
с большой массой и энергией эти трансураны должны были бы оставить в
находящейся по соседству материи отчетливые следы разрушения. Подобные следы
можно увидеть в минералах под микроскопом после их травления. С помощью
такого метода следов разрушения можно в настоящее время проследить
существование давно погибших элементов. Из ширины оставленных следов можно
оценить и порядковый номер элемента -- ширина трека пропорциональна квадрату
заряда ядра. "Живущие" еще сверхтяжелые элементы надеются также выявить,
исходя из того, что они многократно испускают нейтроны. При самопроизвольном
процессе деления эти элементы испускают до 10 нейтронов.
Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин
океана, а также в водах после таяния ледников полярных морей. До сих пор
безрезультатно. Г. Н. Флеров с сотрудниками исследовал свинцовые стекла
древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового
хрусталя XVIII века. Сначала несколько следов самопроизвольного деления
указали на экасвинец-- 114-й элемент. Однако, когда дубнинские ученые
повторили свои измерения с высокочувствительным детектором нейтронов в самом
глубоком соляном руднике Советского Союза, то положительного результата не
получили. На такую глубину не могло проникнуть космическое излучение,
которое, по-видимому, вызвало наблюдавшийся эффект.
В 1977 году профессор Флеров предположил, что он наконец обнаружил
"сигналы нового трансурана" при исследовании глубинных термальных вод
полуострова Челекен в Каспийском море. Однако число зарегистрированных
случаев было слишком мало для однозначного отнесения. Через год группа
Флерова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные
получены при работе с ионообменником, заполненным неизвестным трансураном из
термальных вод. Флеров оценил период полураспада присутствовавшего элемента,
который он еще не смог выделить, миллиардами лет.
Другие исследователи пошли иными путями. Профессор Фаулер и его
сотрудники из Бристольского университета предприняли эксперименты с
аэростатами на большой высоте. С помощью детекторов малых количеств ядер
были выявлены многочисленные участки с зарядами ядер, превышающими 92.
Английские исследователи считали, что один из следов указывает даже на
элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет
порядковый номер 96 (кюрий).
Как же попадают эти сверхтяжелые частички в стратосферу земного шара?
До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы
должны возникать при взрывах сверхновых звезд либо при других
астрофизических процессах и достигать Земли в виде космического излучения
или пыли -- но только через 1000 -- 1 000 000 лет. Эти космические осадки в
настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.
Значит, сверхтяжелые элементы могут находиться в космическом излучении?
Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент
"Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории,
облетавшей Землю, установили детекторы, поглощающие тяжелые частички из
космоса; обнаружены были лишь треки известных элементов. Лунная пыль,
доставленная на Землю после первой посадки на Луну в 1969 году, не менее
тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли
следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли,
что их можно приписать элементам 110-- 119.
Аналогичные результаты дали исследования аномального изотопного состава
благородного газа ксенона, содержащегося в различных образцах метеоритов.
Физики высказали мнение, что этот эффект можно объяснить лишь существованием
сверхтяжелых элементов. Советские ученые в Дубне, которые проанализировали
20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате
трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.
Однако после того, как было установлено, что "природный" плутоний-244,
некогда являвшийся составной частью нашей Солнечной системы, оставляет
совершенно сходные следы, интерпретацию стали проводить осторожнее.

 <<<     ΛΛΛ     >>>   

На пути к неисчерпаемой энергии плутоний энергии
Гофман Клаус. Можно ли сделать золото Мошенники, обманщики и ученые в истории химических элементов 7 элементов
Также элементам 116
Теперь ряд естественных радиоактивных элементов оказался полным элемент элементов

сайт копирайтеров Евгений