Пиши и продавай!
как написать статью, книгу, рекламный текст на сайте копирайтеров

 <<<     ΛΛΛ     >>>   

Каждая клетка, по его мнению, представляет миниатюрный химико-энергетический завод со множеством специальных «цехов». Природа устроила его с таким совершенством, к которому мы на наших заводах еще только стремимся. И на первый взгляд кажется, что использовать такой  сложный  механизм  нереально.

Но вот тут-то и кроется ошибка. Дело в том, что в живом организме все взаимосвязано. И каждый элемент в той же клетке действует, так сказать, с оглядкой (обратные связи) на другие «узлы».

Но если мы захотим вне организма осуществить какую-либо одну функцию, например, получить определенное вещество, которое синтезируется в организме, то задача может значительно упроститься.

Не копируя природу,    но используя    некоторые ее принципы, человек сможет со временем в гораздо более простом виде реализовать любой химический процесс, идущий в живых системах. И тогда химическая технология претерпит подлинную революцию.

Этот новый подход к вещам академик Н. Семенов назвал химической бионикой. Одна из первоочередных ее задач — фоторазложение воды в целях получения ценнейшего топлива — водорода. И сделать это хотелось бы методами, схожими с теми, которыми пользуются растения. Ибо природа решает свои задачи с удивительным изяществом.

Процесс фотосинтеза успешно идет в хлоропластах — крохотных, микронных размеров, органеллах, нафаршированных хлорофиллом и расположенных в каждой клетке листьев растений.

Сложны процессы фотосинтеза. В растениях роль активного центра катализатора выделения кислорода, вероятно, играют ионы марганца, образующие четырехъядерный кластер. Он и служит своеобразным «переключающим» устройством между одноэлектронным актом разделения зарядов в хлорофилле, происходящим под действием света, и четырехэлектронным процессом образования кислорода из воды. В этом один из ключевых пунктов проблемы. Сейчас ученые во многих странах пытаются искусственно воспроизвести эту реакцию. Возможно, вместо марганца придется употребить железо или рутений.

Мы не будем углубляться в дебри трудностей, встающих перед учеными, занимающимися химической бионикой. Трудностей, мешающих решить проблему «искусственного фотосинтеза». Но, допустим, фотолиз воды, идущий в растениях, будет успешно продублирован. Что тогда? Тогда большие пластмассовые кассеты, содержащие водный раствор исходных веществ, расположатся на огромных пространствах энергетических полей. Под действием солнечной энергии в кассетах будут образовываться богатые химической энергией продукты реакции. Эти растворы, медленно циркулируя, попадут на соответствующие подстанции, где из них будут извлекать богатые энергией конечные продукты и добавлять исходные...

Выращивание...  нефти!

Фантазии Природы, ее остроумные находки, отлитые в стройный механизм фотосинтеза, поистине неисчерпаемы. Многие возможности растений только начинают становиться предметом  исследований.

Растения из углекислоты, света и воды «ткут» углеводы, но отчего не углеводороды? Соединения, состоящие только из атомов углерода и водорода (об этом свидетельствует и само их название). Из углеводородов в основном соткана и нефть. И вот ученые задумались: а нельзя ли подыскать растения, так сказать, углеводородоносы?

Есть такой пример, вспомнили ученые, Гевея, знаменитый бразильский каучуконос, дерево, млечный сок которого  (латекс)  является готовым углеводородом.

Одно из наиболее замечательных достижений XX века — получение синтетического каучука. Впервые этот синтез был осуществлен в СССР в 1932 году по способу, разработанному академиком С. Лебедевым.

Производство синтетического каучука (его готовят из продуктов, получающихся при переработке нефти — бутадиена, изопрена, стирола) росло столь стремительно, что после окончания второй мировой войны плантации гевеи почти полностью утеряли свое значение в поставке этого ценного сырья. Но повышение цен на нефть на мировом рынке более чем в четыре раза снова заставило пересмотреть экономические показатели синтетического каучука. Преимущества вдруг обратились в недостатки: ведь на производство одной тонны этого продукта в среднем расходуется три с половиной тонны нефти!

Другая проблема — ужесточение законодательства об охране окружающей среды: высокие затраты на очистные сооружения делают синтетический каучук еще дороже. И конкуренция между натуральным и синтетическим каучуком вновь резко обострилась. Так, американские шинные компании «Гудьир» и «Файрстон» начали в спешном порядке расширять плантации каучуконосов в Либерии и странах Латинской Америки. (Кстати, основной экспортер природного каучука сейчас не Бразилия, а Малайзия — свыше 40 процентов мирового производства — и Индонезия.)

Если можно выращивать каучук, так сказать, «живую резину», то, взглянув на дело глазами профана, уместно поставить и такой вопрос: а нельзя ли выращивать и нефть или какие-то вещества типа нефти или бензина, которые бы стали такими же естественными продуктами фотосинтеза, как глюкоза, жиры и белки?

В самом деле: ведь умеют же растения вырабатывать углеводороды, и высокого качества! В латексе гевеи углеводородные цепочки более длинные, чем в нефти, беда только в том, что они на две трети разбавлены водой.

Итак, почему бы не подыскать растения, непосредственно производящие нефтепродукты? Фантазии? Ан нет! Мысль о растущей нефти выдвинул не профан, а видный ученый, специалист по фотосинтезу, неутомимый пропагандист его возможностей — американский ученый М. Кальвин.

 <<<     ΛΛΛ     >>>   

Необходимая компонента процесса горения
2 миллиона киловатт-часов электроэнергии в год должна была давать эта одна из самых крупных в мире
Эксперимент обычно проводят
Вступая в реакцию с водородом
Но вечные источники энергии

сайт копирайтеров Евгений